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Abstract— Spirals are curves of one sided, monotonically
increasing or decreasing curvature. Spiral segments have the
potential advantage that the minimum and maximum curvature
exists at their end points. Moreover, spirals are free from
inflection points and local curvature extrema. These properties
make the study of spiral segments an interesting problem both
in practical and aesthetic applications. An important issue in
this study has been to design spirals which interpolate to given
positional and tangential end conditions. Previous works suggest
different methods for tackling this and similar problems. This
paper aims to improve the existing methods for deriving C shaped
spiral curves between two circles.

I. INTRODUCTION

Planer spirals have monotonic curvature and are free from
inflection points. Spirals have curvature extrema at their end
points (no local curvature extrema), this makes spirals im-
portant for both physical [Gibreel et al.(1999)] and aesthetic
applications [Burchard et al. (1993)] [1]). In curve and surface
design, it is often desirable to have a spiral transition curve of
G? contact. The purpose may be practical, e.g., in highway
designs, railway routes, and in different CAD applications.
This paper considers cubic spirals common to all modemn
design systems. Since then the derivative of the curvature
is quintic, which means that it is not easy to locate their
zeros, the following simplified problems have been considered
in previous research papers [2][3][5](7] joining the following
pairs of objects: (i) straight line to circle (J transition), (ii)
circle to circle with a broken back C transition, (iii) circle to
circle with an S transition, (iv) straight line to straight line (J
to circle and circle to J) and (v) circle to circle with one circle
inside the other. Walton and Meek have proposed the use of
cubic and PH quintic splines to tackle the five cases (i)-(iv)and
given their theoretical analysis [2][3], where the cubic curves
with the zero curvatures at the one end point have been widely
used, Dietz and Piper have numerically computed values to aid
in adjusting the selection of control points for building cubic
spiral interpolations without zero curvature (at any end point)
restriction, and a table is developed which helps us in selecting
the inner control points of a particular parametric cubic spiral
to interpolate end conditions via matching given end positions
and tangents. Another table is developed that matches tangent
angles and curvatures at the end points of the cubic spiral [1].
It helps us form the spiral joining (v) circle to circle where
one circle lies inside the other.

This paper considers cubic spirals common to all modem
design systems. Since there is no closed form for the roots
of a general quintic polynomial, we first transform the unit
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interval [0, 1] to [0, oo) and next apply a sufficient condition
for roots to derive as theoretically as possible the spiral
conditions on the positions and tangents at the endpoints. Like
[1] our method does not pose the zero curvature restriction
at any end point. However instead of a table, this paper
provides a numerical method to find the middle control points
for constructing spirals conforming to given positional and
tangential conditions. Section 3 gives illustrative numerical
examples.

Il. BACKGROUND
A. Notations and conventions

The usual Cartesian co-ordinate system is presumed. Bold-
face is used for points and vectors, e.g.,

The Euclidean norm or length of a vector a is denoted by the

notation
lall = /a2 + a},

and a||b means the vector a is parallel to vector b. The positive
angle of a vector a is the counter-clockwise angle from the
vector (1,0) to a. The derivative of a function f is denoted
by f’. To aid concise writing of mathematical expressions,
the symbol x is used to denote the signed z-component of
the usual three-dimensional cross-product of two vectors in
the zy plane, e.g.,

axb= a:rby = ayb:r = "G“"b" sin @,

where 0 is the counterclockwise angle from a to b. a - b
denotes the usual inner product.

The signed curvature of a parametric curve P(t) in the
plane is
_ P'(t) x P"(t)

(t) =
" POl

when ||P’(t)|| is non-zero. Positive curvature has the center
of curvature on the left as one traverses the curve in the
direction of increasing parameter. For non-zero curvature, the
radius of curvature, positive by convention, is 1/|k(t)].

(8}

The derivative x'(t) of the curvature in (1) yields

R’(t) —— (b(t)

. T 2)
1P



where

#(t) = P @)1 5 {P(6) x P"(t)) - 3)

3{P’(t) x P"(t)}{P'(t) P"(t)}.

The term ‘spiral’ refers to a curved line segment whose
curvature varies monotonically with constant sign. Following
two conditions on the curvature establish the spiral.

K(t) 20, K(t) 20 @

A G? point of contact of two curves is a point where the two
curves meet and where their unit tangent vectors and signed
curvatures match.

According to Kneser's theorem any circle of curvature of a
spiral arc contains every smaller circle of curvature of the arc
in its interior and in its turn is contained in the interior of every
circle of curvature of greater radius. So two distinct circles of
curvature of a spiral arc never intersect and we cannot find
the transition curve with a single spiral segment between two
tangenl circles or intersectling circles,

III. DESCRIPTION OF METHOD
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Fig. 1. A spiral segment between two circles.

Let P;,i=0,...,3 be four given control points. The cubic
Bézier curve defined by them has eight degrees of freedom in
the interval 0 < ¢ < 1 and is represented as

z(t) = (1 —)*py + 3t(1 — t)%p, + 3t3(1 — t)p, + t°py (5)

Its signed curvature k(t)is given by

z'(t) x 2" (t)

"= Eor

(6)

where “x”, “”and ||.|| mean the cross, inner products of

two vectors and the Euclidean norm, respectively.

We assume throughout this paper that Py = (-1,0) and
P3 = (1,0). As in [2], the tangent lines for the parametric
cubic at t = 0 and t = 1 (figure 2) and the horizonal axes
for a triangle where the length of the lower two sides are
do= 2sing, /sin(¢o + ¢1) (for the side touching P,) and
di= 2singo/sin(po + ¢1) where 0 < ¢y < ¢ < 7/2
This condition restricts the curves to spiral arcs of increas-
ing curvature [Guggenheimer (1963)]. As spirals may be
parametrized and transformed (affine maps), this condition will
not cause loss of generality. Parametrized spirals may be of
increasing or decreasing curvature by changing the direction
of parametrization. 1f both f, and f) are constrained to be
between 0 and 1, parametric cubic spiral will be free from
inflection points. For convexity, this and angle restriction is
necessary [1].

Fig. 2. Spiral arc of Figure 1 after transformation
Figure | shows a spiral segment between two circles
(one containing the other) and Figure 2 shows its translated,
rotated and scaled version.

The ratios (fo, f,) are extensively used in this paper:

lp1 — pol lp2 — pal
— -——"-—'_, _— ?
Jo @ N 7 (7
to see
i 2fosing; (o, i) ®)
P = po mn(qbo-l-qﬁ} CO8qxy, — 8NP ),
_ . 2fisingy g
P2 =Dp3 m(ws¢1.,szn¢1) (9)

To ensure that the parametric cubic curve (5) is free from
inflection points, the ratios (fp, f1) are taken to be from zero
to one.

Then, the curvatures at the endpoints are given

_ (1= fi)singgsin®(dy + qﬁl)
~(0) = 3fZsin¢y &
_ (1 = fo)sing,sin®(¢po + ¢'1)
&(1) = 3 fPsinig (11)
2592singgsingd,

12/ (e) 1w () =

qu t=1/(1+s)

(1+ 8)5sin?(dg + @) =4
(12)

'f
P

e

T e

————— -




where

o= f?cscgq&g + ¢1)sin(bo)((3—3/§ —10f1+9fo f1)singo-+
3(-1+ fo)*sin(do) + 2¢1))

¢y = f1(2(—1+f0)(—6+6f§+17f1—-21fnf1)008¢13iﬂ¢0+
(-12/3 + 22ff + 6f§(2 + 7hH) - 3fh(14 +
9f1))esc(do + ¢1)sin®pp — 12(—1 4 fo) cosgosing,)

0q = 2f1((—2 + 4f1 + fo(5 — 32f, + 3fo(4 — 5fo +
10/1)))cosdrsing + (15/5 — 2/ — 6/3(2 + 5N1) +
3fofi(4 + 5f1))csc(do + d1)sin?dy + (-1 + fo)*(-2 +
15 fo)cosdosing, )

es = 2fo((2 + 6fo(2 — 5f1)fL + f3(-2 + 15f1) +
fi(—=19 + 20f,))cos¢rsingo + (f2(2 — 15f1) + 3(4 —
5A)fF + 6fofi(=2 + 5f1))esc(do + ¢1)sindy — (-1 +
Jo)(2=5f + fo(—2 + 15 f1))cosdpsing)

e = fol(f3(22 = 27f1) + 42fo(—1 + fi)fr — 12(-1 +
H)(=1+2f1))cosdysingo + (—42fo( -1+ fi) fr +12(-1+
I+ J§(=22 + 27f1))esc(do + ¢1)sindo + (12(-1 +
) + fo(34 = 22fy — 34 £y + 27 fo f1))cosgosing, )

e5 = fiese(do + ¢1)sing) ((—3+10 fo—9fo f1+3f7)sing; —
3(—1+ f1)%sin(2¢0 + ¢1))

The parameter t has been replaced by t = 1/1+s) W
convert the domain of t from the stricter condition 0 <t <1
to 0 < 5. Now the following theorem establishes the spiral
conditions:

Theorem I: The transition cubic curve of the form (5) is a
spiral for i = 0,1,..4,5 if

620 (13)

IV. EXAMPLES

Figure 5 shows a spiral segment with starting point p; at (-1,
0) and ending point p3 at (1, 0). The tangent angles of starting
and ending tangents are (¢q, ¢1) = (7/12,7/8) where ¢y and
¢ conform to 0 < ¢y < ¢ < /2. In order to achieve the
spiral segment of Figure 5 we first use Test (13) to find the
possible values of fy and f, which allow a spiral segment.
Figure 3 shows the plot of the spiral region of fp and f,
for which these two ratios allow for circular arcs (The darker
region is obtained from Test). Now using any value of fp and
[f1 from the spiral region we can sec that the curvature remains
monotone and the resulting arcs are spiral. For example Figure
4 shows the curvature plot for (fp, f1) = (0.8, 0.5) and Figure
5 shows the resulting Spiral. Similarly Figures 6 to 9 show
the spiral regions, curvature plots and the resulting spirals for
(¢o, 1) = (rr/10,7/8) and (o, p1) = (7 /4,7/3).

The Spiral regions are obtained using the RegionPlot[] com-
mand of Mathematica 6.0.
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Fig. 3. Spiral region plotted between fo(along x-axis) and f) (along y-axis)
for (@0, ¢1)=(m/12, 7 /8)
(1)

05

0.3}

L I I el U TS

L~ 02 0.4 0.8 0.8 1.0

Fig. 4. Curvature plot for (o, ¢1)= (w/12, 7 /B)and (fy.f1)=(0.8.0.5)
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Fig. 5. Spiral curve berween (-1,0) and (1,0)

V. CONCLUSION AND FUTURE RESEARCH

The work presented in this paper attempted to improve the
existing methods for implementing spiral curves which con-
form to given spatial and tangential conditions by following
a numerical approach. The condition formulated in Test (13)
allows greater flexibility in spiral design than was allowed
by the tabular approach developed in [1]. Moreover, formula
based approaches suffer from lesser space complexity issues
than tabular approaches in software implementations. Future
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Fig. 6. Spiral region plotted between fo(along x-axis) and fi(along y-axis)
for (¢n, ¢1)=(w/10, w/8)
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Fig. 7. Curvature plot for (¢g. ¢1)= (w/10, = /8)and (fo,f1)=(0.8,0.5)
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Fig. 8. Spiral curve between (-1,0) and (1,0)

work along this direction can be continued along various
lines. For example the condition established by test is only
sufficient condition and work can be done to find necessary
condition for cubic Bezier spiral segments fitting spatial and
tangential conditions. Secondly, the condition of the test can
be further relaxed to allow for greater flexibility. Thirdly, in a
broader perspective this paper just deals with spirals between
circles with non-coinciding centers and work should be done
to include concentric circles in the domain as well.
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Fig. 9. Spiral region plotted between folalong x-uxis) and fi(along y-axis)
for (¢o, ¢1)=(x /4, ©/3)
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