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Abstract. When a free, catchy application shows up, how quickly will people
notify their friends about it? Will the enthusiasm drop exponentially with time,
or oscillate? What other patterns emerge?
Here we answer these questions using data from the Polly telephone-based appli-
cation, a large influence network of 72,000 people, with about 173,000 interac-
tions, spanning 500MB of log data and 200 GB of audio data.
We report surprising patterns, the most striking of which are: (a) the FIZZLE

pattern, i.e., excitement about Polly shows a power-law decay over time with ex-
ponent of -1.2; (b) the RENDEZVOUS pattern, that obeys a power law (we explain
RENDEZVOUS in the text); (c) the DISPERSION pattern, we find that the more a
person uses Polly, the fewer friends he will use it with, but in a reciprocal fashion.
Finally, we also propose a generator of influence networks, which generate net-
works that mimic our discovered patterns.
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1 Introduction

How will a catchy phone application propagate among people? Will the excitement
about it spike, oscillate, or decay with time?

Information cascades, like the above one, appear in numerous settings, like blogs,
trending topics in social networks, memes, to name a few. Social influence has been
a topic of interest in the research community [38,30,16,23,21,9,4,8,11,27] because of
the rise of various on-line social media and social networks. In this work, by social
influence we refer to the fact that “individuals adopt a new action because of others”.

Our current work tries to answer all these questions in a large dataset of hundreds of
thousands of interactions. We obtained access to Polly data. Polly is a voice, telephone-
based application which allows the sender to record a short message, choose among six
funny manipulations of distorting his voice-message (faster, slower, high-pitch, etc.),
and forward the modified recording to any of his friends1. Polly was devised as a
platform for disseminating and popularizing voice-based information services for low-
skilled, low-literate people in the developing world. We focus in two main problems,
described informally as follows:

1 For a brief video introduction to Polly, including demos of different voice effects, see
http://www.cs.cmu.edu/ Polly/
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Informal Problem 1 (Pattern Discovery) Consider a real-world influence network:
Given who influences whom, and when, find general influence patterns this network
obeys.

Informal Problem 2 (Generator) Create a realistic influence-network-generator:
– Given a friendship social network (who-likes-whom)
– Design a simple, local propagation mechanism
– so that we can generate realistic-looking influence networks.

By “realistic” we mean that the resulting influence networks match our discovered pat-
terns.

Figure 1 gives examples of a social network (who is friends with whom, in gray,
directed edges), and a possible influence network (who sends messages to whom - in
red; directed, time-stamped, multi-edges). For simplicity, only edges between 1 and 2
are shown with time-stamp and multi-edge structure.
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Fig. 1: Illustration of a ‘base network’ (in gray) and a possible ‘influence network’ (= cascades;
in red). Here, the initial nodes (’seeds’) are nodes 1 and 3.

The contributions of this work are the following:

– Discovery of three new patterns (laws): the FIZZLE, RENDEZVOUS, and DISPER-
SION pattern (Sections 3, 4, 5, respectively);

– Generator and Analysis: We propose a local, efficient propagation mechanism
that simulates an influence graph on top of existing social network datasets (Enron,
Facebook) or synthetic social network datasets [12]. Figure 1 illustrates the process
of simulating influence network. We also did analysis on the DISPERSION pattern.

The importance of the former contribution is that patterns can help marketers and
sociologists understand how influence propagates in a social network; they can also
help spot anomalies, like spammers, or faulty equipment.

The importance of our second contribution is that a realistic generator is valuable
for what-if scenarios, and reproducibility: publicly-available influence network datasets
are notoriously difficult to obtain, due to privacy and corporate regulations; a good
generator can serve as proxy.
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Reproducibility

For privacy reasons, the Polly dataset that we used in this paper is not public. Thus,
for reproducibility, we present experiments on public data (such the Enron Email net-
work [22,1], and Facebook [2]) which exhibit similar behavior like our dataset. We also
make our code open-source at: https://github.com/yibinlin/inflood_
generator/.

Next, we describe the dataset (Sec. 2), our discoveries (Sec. 3, 4 and 5), our gen-
erator (Sec. 6), the related work (Sec. 7) and conclusions (Sec. 8).

2 Dataset Used

The dataset comes from Polly [34,33,32], a simple, telephone-based, voice message
manipulation and forwarding system that allows a user to make a short recording of his
voice, optionally modify it using a choice of funny sound effects, and have the modified
recording delivered to one or more friends by their phone numbers. Each friend in turn
can choose to re-forward the same message to others, and/or to create a new record-
ing of his own. Using entertainment as motivation, Polly has been spreading virally
among low-literate users in South Asia, training them in the use of speech interfaces,
and introducing them to other speech-based information services.

The dataset comes from the first large-scale deployment of Polly in Lahore, Pak-
istan. After being seeded with only 5 users in May, 2012, Polly spread to 72,341 users
by January, 2013. There are 173,710 recorded interactions , spanning 500 MB of real-
world message delivery log and 200 GB of audio data. However, this analysis focuses
only on the forwarding of user recorded messages. In what follows, we denote a user
with a node and a forwarded message with a directed and dated edge. Hence we view
our dataset as an influence network.

We have IRB2-approved access to the full, though anonymized, logs of interaction.

3 Discovered Pattern (P1): FIZZLE

Users may have been introduced to Polly by receiving a forwarded message from one
of their friends, or simply by “word of mouth”. Many such users may in turn call the
system, experiment with it, and possibly send messages to their own friends. Most such
users cease interacting with the system within a few days. Still, a significant number of
users stay with the system for a long time. How does these users’ activity change over
time?

In the following analysis, we define a user’s “system age” as the number of days
elapsed after the user successfully sends out first message. Moreover, the active senders
after n days are defined as the users who actively send out messages on the n-th day
after they sent their first message. Figure 2 depicts the FIZZLE pattern: the number of
active senders (that is, users that still send messages to their friends) vs. their system
age. It also shows the count of messages they sent, as a function of their system age.

2 Institutional Review Board

https://github.com/yibinlin/inflood_generator/
https://github.com/yibinlin/inflood_generator/
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Activity (number of messages (red), remaining users (blue)) vs system age.

Fig. 2: The FIZZLE pattern (P1) - best viewed in color: the number of messages sent (in red) and
count of active senders (in blue), versus system age. In both cases, the excitement follows a power
law with exponent ≈ -1.2. The horizon effect is explained in Section 3.

Both follow power-law distribution with exponents of -1.2 and -1.26, respectively. This
observation agrees with earlier results of the behavior of elapsed time in communication
patterns (see [30]): there, Oliveira et al reported shows similar power-law patterns in
mail and e-mail correspondences, but with slightly different exponents (1.5 and 1).

Observation 1 (P1) The number of active senders c(t) at system age t follows

c(t) ∝ tα (1)

where α ≈ −1.2. Similarly for the count of messages m(t) at system age t.

Horizon effect: In order to get accurate information about the FIZZLE pattern, new
users who are introduced to the system later than 110th day after it was launched were
excluded. In this paper, messages delivered within the first 140 days are analyzed. In
other words, all the users shown in Figures 2 have passed “system age” of 30 (no matter
whether they are still active or not) because they were introduced to the system at least
30 days before the end of our analysis scope. This is exactly the reason for the deviation
from power-law “system ages” of 30 and above are unfairly handicapped.

The detailed power-law linear regression results for the FIZZLE pattern, as well as
all our upcoming patterns, are listed in Table 1. Notice that they all have extremely high
correlation coefficient (absolute value ≥ 0.95).

4 Discovered Pattern (P2): RENDEZVOUS

In a directed network, propagation from one source can take multiple paths to the same
destination node. Of particular interest to us are two paths that diverge for a while (with
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Table 1: Summary of Power Laws Observed in Our Dataset
Pattern Slope Correlation

k Coefficient r
P1 The FIZZLE pattern (number of remaining users) k1 −1.2 −0.994
P1 The FIZZLE pattern (number of phone calls) k3 −1.26 −0.996
P2 The RENDEZVOUS pattern k2 −4.88 −0.992

no intermediate connections between them) before they re-converge – an event which
we here call RENDEZVOUS. This event type corresponds to diffusion into different so-
cial circles (e.g. a-friend-of-a-friend... of-my-friend, whom I am unlikely to know), fol-
lowed by convergence. The prevalence of such re-convergences can shed light on the
effective population size. In a large country like Pakistan (180 million people), the ef-
fective population size for our system may vary widely and is unknown a priori. Thus,
we are interested in the prevalence of RENDEZVOUS as a function of the shortest path
to the most recent common ancestor of two parents of a node, where path length and
recency are both measured in terms of number of edges, rather than time. A node with
k parents gives rise to k · (k − 1)/2 different RENDEZVOUS. Taking into account the
edge from the common child to its parents, we have the following definition:

Definition 1 (n-RENDEZVOUS:) An n-RENDEZVOUS is defined as a RENDEZVOUS
where the shorter path from the two parents to their most recent ancestor is of length
n− 1.

For example, Fig. 3(a) shows a RENDEZVOUS of length 2: the shortest leg from the
final node Ω to the starting node A, is n=2 hops long.

A

C

D

E

F

Ω

24

1

(a) A 2-RENDEZVOUS. (b) Distribution of RENDEZVOUS

lengths

Fig. 3: (a) Example of a 2-RENDEZVOUS. (b) Distribution of RENDEZVOUS lengths follows a
power law with exponent -4.88.
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Figure 3(b) shows that the length distribution of RENDEZVOUS’ in our dataset fol-
lows a power-law . Most of RENDEZVOUS have a length of 1, meaning that one of the
parents is the most recent common ancestor, because it has a direct link to the other
parent.

Observation 2 (P2) The number of RENDEZVOUS’ n(l) at RENDEZVOUS length l
follows

n(l) ∝ lβ (2)

where β ≈ −4.88.

5 Discovered Pattern (P3): DISPERSION

Let the “reciprocal activity” between two users be the smaller of the number of mes-
sages sent between them in either direction. Let the “activity profile” of a user be
{m1,m2,m3, ...,mF } (m1 > m2 > m3 > ... > mF > 0), where mi is the reciprocal
activity between a user and one of his recipients.

Definition 2 (DISPERSION) The DISPERSION D of a user with activity profile {m1,m2,
m3, ...,mF } is defined as the entropy H of the normalized count distribution:

D(m1,m2, ...,mF ) = −
F∑
r=1

Pr ∗ ln(Pr)

Where Pr = mr/
∑F

k=1mk.

Therefore, if a user has a high DISPERSION, she sends messages her friends more evenly
than other users with the same number of friends, but lower DISPERSION.

Figure 4(a) shows that the real DISPERSION (entropy) is smaller than the “maxi-
mum dispersion” where a user sends messages each of her friends evenly. This means
that long-term Polly users on average exhibit the DISPERSION pattern when they send
messages to their friends.

We can explain the DISPERSION behavior using a closed-form formula, under the
assumption that people send messages to their friends following a Zipf’s distribution,
which implies Pr ∝ 1/r, to be specific, Pr ≈ 1/(r × ln(1.78F ))[35, p. 33]. Based on
this, we can derive that if we use integral as an approximation of the sum part of the
entropy calculation:

Lemma 1. The entropy H of a Zipf’s distribution is given by:

H ≈ (C × ln2(F ) +K × ln(F )lnln(1.78F )), where F > 1. (3)

The proof is omitted for brevity.

Observation 3 (P3) Dispersion pattern can be modelled well by Zipf’s law in our
dataset.
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(a) DISPERSION pattern in our dataset (b) DISPERSION pattern in Experiment E1

(Enron)

Fig. 4: (a) DISPERSION pattern found in the influence network. (b) DISPERSION pattern found in
simulated influence network in Experiment E1, see Section 6.

The mathematical analysis shows that the “friend contact” distribution of a user with
F reciprocal friends will follow an expected entropy value proportional to the square of
logarithm of F (ln2(F )) other than (ln(F )) when we assume the distribution follows
uniform distribution. The predicted entropy of Eq (3) matches reality much better than
the uniformity assumption. As shown in Figure 4(a), the predicted entropy (the dashed
blue curve) is a better match for the real data (red dots), while the uniformity assumption
leads to the black-dotted line.

6 INFLOOD GENERATOR: Algorithm and Evaluation

First, we formally define the base and influence network:

Definition 3 (Base Network) A Base Network (Vbase, Ebase) is the underlying social
network of all people who are related to social information cascades. Vbase is a set
of individuals. Ebase is a set of directed, weighted edges. The weights represent the
strength of connections.

Definition 4 (Influence Network) An Influence Network (Vinfl, Einfl) shows which
node sent a system message to which node, and when. Vinfl is a set of individuals.
Einfl is a set of directed, timestamped edges of which the weight shows the number of
times a node has been notified of the influence by another node.

In our model, Vinfl ⊆ Vbase,Einfl ⊆ Ebase, i.e., individuals can only be influenced
by others they know.

We model all patterns by using INFLOOD GENERATOR. As mentioned above, Polly
can be viewed as an influence network where people are notified of it from their base-
network friends. After the notification, people may start forwarding messages.
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Why we need a generator The best way to verify all our three patterns (FIZZLE, REN-
DEZVOUS and DISPERSION) is to study other influence network datasets. However,
they are difficult to obtain, and some of them lack time stamp information (See Sec 1).

Details of INFLOOD GENERATOR The pseudo code of our influence-network gener-
ator, is given in Algorithm 1. In more details, on day 0, s0 seed nodes (s0 = 5) in the
social networkG1 (e.g., Facebook or Enron) are notified of Polly. Then, each following
day t, every person u who has been notified of Polly has a probability, Pu,t, of calling
some of her friends via Polly. The friends are sampled from the outgoing edges from
G1 independent of no matter whether they have been already notified.

Input: G1 = A base network, T = simulated days, α = power-law decay factor, Pu,0:
first-day infection probability of user u, day = 0.

Output: An influence network G2 on top of G1
begin

notifiedUsers←−(5 randomly chosen people in G1 with notified day tu = 0);
day ←− 0;
while day < T do

for each user u in notifiedUsers do
coin←− TAIL;
if random() < Pu,t in Equation 4 then

coin←− HEAD;
while coin == HEAD do

f = a friend sampled from G1;
if f is not in notifiedUsers then

add f into notifiedUsers with tu = day
else

//User u has sent a message to user f , Record this interaction.
//Details are omitted for simplicity.

if random() >= Pu,t then
coin←− TAIL;

day ←− day + 1;

Algorithm 1: Pseudo Code of INFLOOD GENERATOR

The probability of a user u telling other people about Polly is given by

Pu,t = Pu,0 × (day − tu)−1.0×α, day > tu (4)

, where α parameter affects the exponent of the power-law that governs the decay
of infection activities, and Pu,0 is defined the first-day infection probability.

Estimating Pu,0 Pu,0 depends on the total weight (number of communication mes-
sages) a user (node) has in base network G1. In fact, Pu,0 is set so that, in expectation,
the number of edges user u makes on the first day msgu,0 is proportional to the user’s
total weight of out-going connection strength in base network G1, i.e.
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msgu,0 = c×
∑
v∈VG1

wu,v (5)

Note that in Algorithm 1, the process of sending messages is a geometric distribu-
tion. Hence we can get msgu,0 = 1/(1−Pu,0) in expectation.

Hence, we set the Pu,0 to be:

Pu,0 = 1− 1

c×
∑
v∈VG1

wu,v
(6)

This ensures that a high weight node has more simulated edges. It is also more
realistic, because more social people may spread messages more easily. In our setting,
c = 1

4 , i.e. a user will contact a quarter of her G1 out-degrees in expectation on the first
day. This formula is based on experimental observations.

Evaluation of INFLOOD GENERATOR We tested INFLOOD GENERATOR in a number
of networks. Here we use communication networks, such as Facebook, to be approxi-
mations of “real” base network. The results are presented in Table 2.

Table 2: Results of INFLOOD Simulations
Experiment Base Network G2 |V | G2 |E| FIZZLE slope RENDEZVOUS

G1 k1 slope k2
Polly N/A 72, 341 173, 710 −1.2 −4.88
E1 Enron [22,1] 19, 829 227, 659 −1.16 −8.39
E2 Slashdot [3,17] 6, 880 19, 781 −1.18 −6.11
E3 Facebook [2] 22, 029 222, 686 −1.16 −7.65

In all experiments, α = 1.17, and the number of simulated days is T = 140.
In all cases, the correlation coefficients |r| were high (|r| > 0.93). The FIZZLE

slopes k1 are calculated based only on the first 30 days of interactions of each user,
exactly as we did for the real, Polly dataset. Recall that k1 is the slope of the FIZZLE
pattern, that is, the slope of the number of remaining active users, over time, in log-log
scales. For the RENDEZVOUS pattern, the k2 slope varies between experiments. This
may be due to the small count of data points, see Fig 3(b). We also tested the INFLOOD
GENERATOR on synthetic datasets, such as Erdös-Rényi graphs of various parameter
settings. Notice that the RENDEZVOUS pattern is violated: the Erdös-Rényi graphs do
not follow a power-law in their RENDEZVOUS plots.

Because the INFLOOD GENERATOR graph is big, we observe the DISPERSION pat-
tern in Experiment E1. Figure 4(b) shows that the entropy footprint grows well with
the Zipf’s distribution curve for users who have less than 50 friends. When the number
of friends goes beyond 50, the entropy footprints seem less regular as the number of
samples decreases.

Again, the INFLOOD GENERATOR code is open source, see Sec 1.
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7 Related Work

Static graph patterns. These include the legendary ’six-degrees of separation’ [29];
the skewed degree distribution [13], specially for telephone graphs [5]; the power law
tails in connected components distributions; the power law PageRank distributions and
bimodal radius plots [20]; the super-linearity rules [28], triangle patterns [39,19]. This
list is by no means exhaustive; see [10] for more patterns. Algorithms for detecting
these patterns have been proposed by multiple research teams, such as [18].

Temporal and influence patterns. Work on this topic encompasses the shrinking di-
ameter and densification [25]; the power law for the mail response times of Einstein
and Darwin, [30]; analysis of blog dynamics [16,26], and discovery of core-periphery
patterns in blogs and news articles [15]; viral marketing [23,21]; meme tracking [24];
reciprocity analysis [14,6]; analysis of the role of weak and strong ties in information
diffusion in mobile networks [31]; identification of important influencers [36]; predic-
tion of service adoption in mobile communication networks [37]; information or cas-
cade diffusion in social networks [9,4,8,38]; linguistic change in online forums, and
predicting the user’s lifespan based on her linguistic patterns [11]; peer and authority
pressure in information propagation [7].

However, none of the above works reports anything similar to our discoveries, the
RENDEZVOUS and the DISPERSION patterns.

8 Conclusions

We study a large, real influence network induced by the Polly system, with over 70,000
users (nodes), 170,000 interactions (edges), distilled from 500MB of log data and 200GB
of audio data. Polly is a free, telephone-based, voice message application that has been
deployed and used in the real world. Our contributions are as follows:

1. Discovery of new patterns in Polly:
– P1: the ‘enthusiasm’ drops as a power law with time.
– P2: The RENDEZVOUS pattern shows a power-law distribution.
– P3: The DISPERSION pattern of users behaves like a Zipf distribution;

2. Generator and Analysis:
– We propose the INFLOOD GENERATOR algorithm, which matches the ob-

served patterns (P1, P2 and P3) in various communication networks. The code
is open-sourced at https://github.com/yibinlin/inflood_generator/.

– We give the derivation for the observed DISPERSION pattern

With respect to future work, a fascinating research direction is to estimate the un-
derlying population size of our dataset, from the statistics of the RENDEZVOUS pattern.

https://github.com/yibinlin/inflood_generator/
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