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ABSTRACT

With the advancement in natural-sounding speech pro-
duction models, it is becoming important to develop models
that can detect spoofed audios. Synthesized speech models
do not explicitly account for all factors affecting speech pro-
duction, such as the shape, size and structure of a speaker’s
vocal tract. In this paper, we hypothesize that due to practi-
cal limitations of audio corpora (including size, distribution,
and balance of variables like gender, age, and accents), there
exist certain phonemes that synthesized models are not able
to replicate as well as the human articulation system and such
phonemes differ in their spectral characteristics from bonafide
speech. To discover such phonemes and quantify their ef-
fectiveness in distinguishing between spoofed and bonafide
speech, we use a deep learning model with self-attention, and
analyze the attention weights of the trained model. We use the
ASVSpoof2019 dataset for our analysis and find that the at-
tention mechanism picks most on fricatives: /S/,/SH/, nasals:
/M/,/N/, vowels: /Y/, and stops: /D/. Furthermore, we obtain
7.54% EER on train and 11.98% on dev data when using only
the top-16 most attended phonemes from input audio, better
than when any other phoneme classes are used.

Index Terms— spoof, bonafide, countermeasure, atten-
tion, phonemes, deep neural network, senet, explainable, fair,
small datasets, forensics, deepfake.

1. INTRODUCTION

Deepfake audios are increasingly being used to spread mis-
information, and have become a threat to numerous voice-
based systems like automatic speaker verification (ASV) and
voice biometric systems. For example, audio deepfakes have
been used to spread false political narratives which were re-
garded as a significant threat to the 2020 US presidential elec-
tion and have been used to attack voice authentication systems
in banks; on one occasion leading to a loss of USD 243,000
[1]. These examples highlight the extent of the misuse and
harm that audio deepfakes can cause. There are several ways
that deepfakes can be detected and in this paper we want to
explore the task with respect to the human voice production
system and its intricacies when producing speech sound units,
which are absent in deepfake speech.

The human voice production system is a complex one;
it is influenced by multiple bio-parameters of the individual
speaker, which include the human vocal tract, its shape and
size, thickness of the vocal folds, facial structure, state of the
physical and mental health of the individual and lung capac-
ity among others. These parameters affect the articulatory-
phonetic units of speech. They vary across speakers and even
within multiple utterances from the same speaker.

The various parts of the voice production system come
into play when the air expelled from lungs is modulated by
the mechanical vibrations of the vocal folds. The physical
movements of the vocal tract change its shape and the dimen-
sions of the various resonant chambers, introducing resonant
patterns in the acoustic signal. Each distinct pattern character-
ized by the articulatory configuration of the vocal tract results
in intelligible sound units known as phonemes. As phonemes
result from a complex physical movements of the articulators
and the vocal tract, they also carry speaker-specific character-
istics in addition to linguistic cues [2].

Different measurements in the context of stop phonemes
such as the voicing onset time (VOT) have been correlated
with numerous parameters of a speaker like age [3], speaking
rate [4], diseases like Parkinson’s [5], depression [6]. Further-
more, the first three formant frequencies and their movements
have been correlated with characteristics of the speaker such
as speaker identity and speaker height [7].

While deep learning based audio synthesizers have been
highly successful in generating an individual’s voice, we think
that the intricacies of the human voice production system may
not be fully captured in such synthesis models. This incapac-
ity is highlighted in scenarios where the data is scarce, espe-
cially when producing non-celebrity individual’s voice. Syn-
thesis models require huge amounts of data for model train-
ing and in low resource settings, constraint by the training
data’s distribution, do not perform well. Motivated by this,
we hypothesize that there exist some phonemes or class of
phonemes that the spoof generation models are not able to
produce as well as others. Thus, studying the differences at
the phoneme level will provide further insights into the nature
of the deep learning based synthesizers or voice conversion
models. Furthermore, it will also help in improving the deep-
fake detection models by focusing on the more distinguishing
aspects of speech between bonafide and spoofed audios, by



adding explainability and interpretability into the DNN mod-
els.

In this paper, we quantify the phonetic differences be-
tween spoofed and bonafide speech by first modelling the
problem as a classification task. We develop a deep learn-
ing based model for the task with self attention mechanism
in place. The attention mechanism provides a way to quantify
the phonemes that are highly attended to while doing the clas-
sification task. We later analyze the most attended phonemes.
We find that fricatives including /S/, /SH/, nasals /M/, /N/ and
vowel /Y/, stops including /D/ are among the most-attended
phonemes. To test the efficacy of these selected phonemes,
we compare the performance on the spoof detection task by
using only parts of the input audio corresponding to specific
categories of phonemes like vowels, stops, fricatives, and the
top most attended phonemes. We find that when using the
top 16 most attended phonemes, we obtain the best EER,
lower than any other categorization, of 7.54% on the train
set and 11.98% on the dev set. Our work would directly help
in improving the performance of spoof detection, especially
in low computational settings whereby the most distinguish-
ing phonemes could be focused on to flag suspicious audios.
Secondly, in ASV systems, the speaker could be asked to ut-
ter words including the distinguishing phonemes, making it
easier to detect deceitful speakers. To the best of our knowl-
edge, this is the first study that explores phonetic differences
in spoof and bonafide speech using an explainable DNN ap-
proach.

2. BACKGROUND WORK

We discuss two different categories of related work. One fo-
cuses on the models and features that have been explored for
the task of audio spoof detection. Since in this work we have
used attention mechanism in order to isolate and identify the
phonemes better at discerning spoofed and real speech, the
second category we explore is related to studies using atten-
tion mechanism in order to add explainability into the deep
learning model on speech based tasks.

Automatic detection of the audio spoof detection has been
tackled using various deep learning frameworks, for example
[8] uses recurrent convolutional structure for spoof detection,
[9] uses resnet block architecture for the task, [10] uses time
delay neural network architecture, [11] uses senet [12] model
architecture for the task. Numerous papers have explored
the distinguishing features between spoofed and bonafide, e.g
[13] uses bispectral analysis and shows the efficacy of the fea-
tures when used with simple machine learning models, [14]
uses the voicing onset time and coarticulation, [15] studies
the prosodic differences, [16] studies the specific frequencies
which are more effective and found that lower frequencies
(< 1kHz) and high frequencies (> 7 khz) are the most useful,
[17] uses mean pitch stability, its range and jitter as features.

Attention mechanism has been very effective at improv-

Fig. 1. Squeeze and excitation block used in the deep neural
model

ing performance on a number of tasks (largely in NLP and
speech domain), a survey of which can be found here [18].
Recently attention has been used solely as a way to add inter-
pretability and explainability to deep neural models, which al-
lows us to examine the internal workings of largely black box
neural architectures. Chan et al., [19] showed that in speech
recognition, acoustically similar units of speech have similar
attention weights and the alignment between character and
audio signal are identified correctly by the attention weights.
Palaskar et al., [20] analyses attention in speech recognition
task and find that highest attention weights are for the word
end boundaries. Dhamyal et al., [21] uses attention weights
to analyse the phonetic differences between acted and spon-
taneous emotional speech and found significant differences
between phonemes in the two classes.

Specifically for audio spoof detection, [22] has focused on
adding explainability by using GradCAM Binary maps which
finds patches of the audio input spectrogram that the model
most focuses on. However no further study has been done to
find a pattern in those patches, i.e. whether the patches are
focused on certain frequencies, or on specific sounds etc.

In contrast to earlier work on audio spoof detection, we
analyze the vocal expression of phonemes in the spoofed and
bonafide speech in order to identify and quantify the impor-
tance of phonemes that the spoof generation models are not
able to synthesize well enough. Identifying such phonemes
could help in better detection of spoofed speech and in text-
dependent speaker verification/identification system where
the text could include those specific phonemes, making it
harder for adversaries to fool the system.

3. DEEP NEURAL MODEL

3.1. SENET

We use senet model architecture; specifically senet-50 which
uses the squeeze and excitation and residual layers. Figure 1
shows a depiction of the squeeze and excitation layer that are
used in the model. Such layers have been shown to outper-
form other DNN architectures for the audio deepfake detec-
tion task [23, 11]. To be able to capture which parts of the
input the model most focuses on to predict the output label,
we use self attention mechanism. Details of this are in the
next section.



3.2. Self-Attention mechanism

In the senet architecture, given a input signal of length 7', the
model produces a sequence of 1" output vectors of dimension
d, let this output be H = {hq, ho, ..., hr}, where h; is the
hidden representation of the input at time ¢. The self attention
mechanism takes this hidden representation H as input and
outputs the attention matrix A as follows:

A = softmax (g(HT W1)W3)

where 17 is of dimension d x a and W5 is of dimension a X r.
r represents the number of attention heads; 32 in our case and
g(.) is any activation function, we use ReLu. Softmax func-
tion is performed over the time dimension. As a result, A is of
dimension 7" x r, where the vector at time ¢ is a weight vector
that represents the weight of h;. To get the weighted output
E, we do: E = HA, where E is of dimension d x r. We do
average pooling on E and then pass this through a linear layer
to get the class probabilities for spoof and bonafide.

4. EXPERIMENT

4.1. Dataset

To analyze the performance of our countermeasure model, we
use the ASVSpoof2019 Logical Access (LA) Dataset [24].
The synthetic audio samples in this dataset are created using
a set of 6 different text to speech (TTS) systems and voice
conversation (VC) algorithms, consisting of neural waveform
model, vocoder model, waveform concatenation and spectral
filtering, detailed in Table 1.

Since the dataset does not contain transcripts for the au-
dio, we transcribe it using IBM Watson Speech-to-text API
[25] and then use an HMM-based phoneme segmentor [26]
to get word and phone boundaries. Figure 2 shows the fre-
quency of all the phoneme in the training and the dev subset
of the data. The total number of phonemes in the inventory
are 40 (including silence).

4.2. Features

We use the Constant Q cepstral coefficient (CQCC) features
based on the constant-Q transform. It provides a variable-
resolution, time-frequency representation of the spectrum.
Many deep learning countermeasure models are based on
the CQCC features. We use a matlab implementation of
CQCC to compute the features [23], where CQT is applied
with maximum frequency of fmax = fs/2 (where fs is the
sampling rate of the given audio) and minimum frequency of
fmin = fmax/2° where 9 is the number of octaves. The num-
ber of bins per octave is set to 96. These parameters result in
a time shift or hop of 8ms. Delta and delta-delta features are
also appended. These parameters are empirically optimised
for the audio spoof detection task [23].

Training Data

Frequency (x1000)
= o N
5 a o

w

o

IFIZVO>-IISWENYSI>CISSI>-00LS0J0IOI>SIII>T
<= = °;< zwww<§ I< %zﬁ Fan EZ—UON
Phonemes

Development Data

N
o

[
5

Frequency (x1000)
w 5

o

Wi~ g
Phonemes

TFIZN0>-TWSENY>TSIE>>T20nuSJ00IOIIS>II>T
<= = |:<’2g =30 =§ %mz l-<ln=§ =OON

Fig. 2. Total number of phonemes in the train (on the top) and
development data (on the bottom).

4.3. Training

Since we are using multi-head attention, where r (the number
of attention heads) = 32, we need to encourage the atten-
tion heads to learn different aspects of the input audio. In
order to do this, in addition to the cross entropy loss L.,
we add a loss term L, into the final loss function, where
L, =|[(ATA —1I)||%, where A is the attention matrix, [ is
the identity matrix and F’ is the Frobenius norm. This is simi-
lar to the loss terms used in [28]. The final loss term becomes

L=MLe) + (1= NI,

where A is a hyper-parameter.

We train several models with the same senet-50 architec-
ture and with different values of A\ to extract the attention
weights and analyze the similarities between each pair of at-
tention weights. We train each model for 50 epochs, while
using batch SGD with a learning rate of 0.001, decreasing at
epochs 10 and 20 with decay rate of 0.0001, and use a batch
size of 16.

5. RESULTS AND ANALYSIS

5.1. Spoofed speech detection model performance

To evaluate the counter measure model, we use Equal Error
Rate (EER) and t-DCF cost. t-DCF evaluates the performance
of a spoofed audio detection model in conjunction with a
given ASV method. The ASV scores are provided as part
of the ASVSpoof2019 challenge.

Table 2 shows the results of three different deep neural
models with the same architecture as explained in Section 4.3,
and trained in similar manner except for the A used in the loss



Table 1. Spoof audio generation systems in ASVSpoof2019
LA train and dev subsets. [27]

System Description
A01 NN based TTS system using VAE-LSTM
as the acoustic model and Wavenet vocoder for
waveform generator
A02 NN based TTS system using VAE-LSTM
as the acoustic model and WORLD
vocoder for waveform generator
A03 Feedforward NN as the acoustic model and
WORLD vocoder for waveform generator
A04 A waveform concatenation TTS
A0S NN VC system using VAE as VC model
and WORLD vocoder for waveform generator
A06 Transfer function based VC system

Total Train  No. of speakers: 20, bonafide: 2580,

spoof: 22800

Total Dev  No. of speakers: 20, bonafide: 2548,

spoof: 22296

function. The purpose for training several different models
is to extract the attention weights for each of the audio files
in the training and dev subsets and compare them. We hope
that the attention weights are reproducible and no matter what
loss functions are used for the deep neural network model,
the interpretation that we assign to the attention weights is
valid and reliable. The results achieved are comparable to the
numerous studies on the data. Among the three models, we
obtain better results when A is decreased and the L, loss term
is given more weightage. However, when the weight of L,
increases more than 0.5, the result worsens.

Table 2. Several models are trained with the same architec-
ture and same training procedure as described in Section 4.3.
The X for the loss function is different in each training.

Model Train Dev Eval
EER(%) EER(%)/t-DCF EER(%)/t-DCF
A(=1) 1.82 5.38/0.17 20.99/0.59
B(A=0.9) 1.79 4.12/0.13 14.10/0.34
C(A=0.6) 1.51 3.65/0.11 14.03/0.37

5.2. Attention weight analysis

Figure 3 shows examples of attention weights for individual
files from two different models, and the highlighted peaks.
The weights that are greater than the mean plus one standard
deviation of the weight vector are chosen as the peaks, which
represent the time steps where the attention is higher than the
rest. To analyse the differences in the weights from each of
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Fig. 3. Visualization of the attention weights obtained for
two audios (rows) from two different models (columns). The
similarities between the weights obtained from two different
models can be observed from this example.

trained model, we measure the cosine similarity between all
pairs of the weight vectors from the three trained models for
all audios. Figure 5 shows a histogram of the cosine similarity
scores. The mean cosine similarity for the train set is 0.74 and
that of the dev set is 0.73. This indicates that the attention
weights from multiple models are similar. Furthermore, by
treating the weight vector as a signal, we perform dynamic
time warping (DTW) Sakoe-Chiba’s algorithm on each pair
of the weight vector from the three models and calculate the
DTW with an allowance of a window, to allow the weights to
differ up to some specific number of frames. The idea is to
allow the weights to be shifted a little bit given each phoneme
spans more than one frame. Figure 6 shows the average DTW
distance for all the audio file weights for three models with
different window sizes. The differences in the distance are
too small to be noticed in the figure, however as expected the
higher the window size, the lower the distance.

5.3. Most Attended Phonemes

To identify the most attended phonemes, we only consider
the peaks that are consistent in all the three models. Figure
4 shows the attended phonemes in train and dev set of the
data. It can be observed that in both subsets of the data, frica-
tives like /S/, /SH/, nasals like /M/, /N/, stops lie /D/ and vow-
els like /Y/, /IH/, are predominant in the top most attended
phonemes.

5.4. Phonemes subset

In order to access the phoneme subsets that are chosen by the
self-attention model, we evaluate the trained model A (see
Table 2 above) on the train and dev subsets by only using cer-
tain phoneme sounds in the input audio. For example, given
a vowel /AA/ and an input audio, we only select parts of the
audio where /AA/ is spoken, and patch them together (Note:



Table 3. Performance of model A (see table 2 above) on train and dev subsets when using only specific phoneme classes from

the input audios.

Phoneme class vowel ‘ fricative ‘ stop | nasal | voiced | unvoiced | top-16
high  mid low | voiced unvoiced sibilant | voiced unvoiced bilabial velar alveolar
train EER (%) 17.76 16.46 23.14 | 22.45 19.06 19.13 | 24.96 20.80 2721 2654  21.50
9.36 15.32 17.44 23.07 | 18.46 13.50 7.54
dev EER (%) 21.84 2035 2739 | 27.81 24.20 23.93 | 31.07 26.63 3200 3057 2822
12.15 20.27 20.95 28.31 | 2471 19.01 11.98

Train data

Frequency

S - fricative
SH - fricative
M - nasal

N - nasal

D - stop

Y - semivowel
F - fricative
TH - fricative
DH - fricative
AO - vowel
HH - aspirate
IH - vowel

P - stop

AE - vowel

W - semivowel
CH - affricative

Dev data

Frequency

S - fricative
SH - fricative
N - nasal

IH - vowel

M - nasal

Y - semivowel
DH - fricative
W - semivowel
D - stop

OW - vowel
EY - vowel

V - fricative

L - liquid

HH - aspirate
AE - vowel

T - stop

Fig. 4. Frequency of the attended phonemes in the train (up)
and dev (bottom) subsets of the data.
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0.4 0.6 0.4 0.6
Cosine Similarity Cosine Similarity
Fig. 5. Histogram of cosine similarity scores between weights
obtained from all the models.

for all the analyses, we also include the silence regions of the
audio). We do this for all the audios and pass them through
the trained model. Table 3 shows the EER obtained when do-
ing this over multiple subsets of the phonemes. top-16 class
includes the top 16 phonemes that are picked on by the self-
attention model as the most attented phonemes, namely, ’S’,
SH’,’M’, °N’, ’IH’, ’Y’, ' DH’, "W, °D’, "OW’, ’EY’, "V’,
'L, "HH’, "AE’, *T’; thus this class is a mixture of fricatives,
nasals, stops and vowels.

From table 3, we observe that vowels perform best among

DTW - window=0 DTW - window=5
0 1 2 0

1 2

3.0
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Fig. 6. Average DTW distance using different window sizes
for each pair of audio file weights obtained from 3 models in
the train set.

all other identified phoneme groupings achieving EER =
9.36% on train, 12.15% on dev. Among vowels, the vowel
with height mid performs better than vowels with height high
and low. Among fricatives, unvoiced fricatives perform better
and also among stops, unvoiced stops perform better. Further-
more we also consider only unvoiced and voiced consonants,
including fricatives and stops. Unvoiced consonants include
K, P, T, F, "TH?, ’S?, ’SH?, "HH’ and voiced include
’B’, ’D’, °’G’, ’V’, '’ DH’, °’Z’, ’ZH’. We find that unvoiced
consonants perform better than voiced and better than most
other classes, third to top-16 and vowels.

However when we use the top-16 attended phonemes ex-
clusively for the classification task, we find that the attended
combination of vowels, fricatives, and stops performs better
than any single class of phonemes and gives the lowest EER,
7.54% on train, 11.9% on dev.

Finally, we also analyse the top attended phonemes for
each individual TTS/VC systems. We find that the top-16
most attended phonemes in each system individually has 61%
overlap on average with the top-16 phonemes reported earlier.
The most frequent phonemes common across all systems in-
clude /S/,/IH/,/DH/,/EY/,/AE/,/T/,/N/, which are all present in
the overall top-16 class as well.

6. LIMITATIONS AND FUTURE WORK

Even though attention has been used popularly for adding ex-
plainability into the neural models, some studies [29, 30] ar-
gue against the usefulness of exploring attention weights to
add explainability to the task at hand. Being mindful of this,



we compare the attentions across multiple trained model in or-
der to access the consistency across weights. We find that the
attention weights obtained over multiple runs are very sim-
ilar and thus gives us confidence in our results. Secondly
we have used pronunciation dictionary to represent each word
into a series of phones, called phonemic transcription, which
is a particular form of broad transcription which disregards
all allophonic differences. This creates a difference in the ex-
pected phoneme occurrence in the audio sample and the ac-
tual phonemes present in the pronunciation. This in turn may
affect our analysis, however with the amount of data used we
believe such discrepancies to be rare.

In future, we hope to extend a similar analysis to lan-
guages other than English, especially low resource languages.
We would also like to explore the extend to which light weight
ML models can perform when using only certain phonemes,
in order to enhance our ability in low computational settings.

7. CONCLUSION

In this paper, we analysed the phonetic differences between
spoofed and bonafide speech using ASVSpoof2019 corpus
which contains spoofed speech from 6 different synthesizers.
We employed a deep neural network based classifier com-
posed of senet and residual layers, with self attention mech-
anism. The self attention mechanism plays a vital role by
attending to the parts of input audio that are most useful for
the classification of the audio into spoof or bonafide class.
We later analysed these attention weights from three different
trained models.

From our results, we conclude that fricatives like /S/, /SH/
and nasals, vowels like /Y/ and stops like /D/ are the distin-
guishing phonemes in spoofed and bonafide speech. When
the 6 synthesizers used in the dataset are analyzed individu-
ally, we find that the top-16 class phonemes are consistently
present in all the results. This validates our original hypothe-
sis that machines are not able to model the workings of voice
production very well. Furthermore, we also only use parts
of the input audio which correspond to specific classes of
phonemes. We find that when using the top-16 most attended
phonemes, we get the lowest EER on both train and dev sub-
sets, being 7.54% on train and 11.9% on the dev data. Next to
this is the performance of vowels, where EER is 9.36% on the
train set and 12.15% on the dev set. Identifying the phoneme
groupings which are more distinguishing than others for audio
spoof detection helps in better spoof detection models where
the focus can be specifically on such phonemes and also helps
in better protection of ASV systems against spoof attacks. It
is also beneficial in building spoof detection models for low
data and computational resource settings, especially for low
resource languages or when building models for specific in-
dividuals where training data is harder to find or deploying
models to devices where computational capacity is low. In
such cases, we hope that simpler models are built to work off

of the most distinguishing phonemes and obtain satisfactory
performance.
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