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Abstract
Fake audio generation has undergone remarkable improve-

ment with the advancement in deep neural network models.
This has made it increasingly important to develop lightweight
yet robust mechanisms for detecting fake audios, especially for
resource-constrained settings such as on edge devices and em-
bedded controllers as well as with low-resource languages. In
this paper, we analyze two microfeatures: Voicing Onset Time
(VOT) and coarticulation, to classify bonafide and synthesized
audios. Using the ASVSpoof2019 LA dataset, we find that
on average, VOT is higher in synthesized speech compared to
bonafide speech and exhibits higher variance for multiple oc-
currences of the same stop consonants. Further, we observe
that vowels in CVC form in bonafide speech have greater F1/F2
movement compared to similarly constrained vowels in synthe-
sized speech. We also analyse the predictive power of VOT and
coarticulation for detecting bonafide and synthesized speech
and achieve equal error rates of 25.2% using VOT, 39.3% us-
ing coarticulation, and 23.5% using a fusion of both models.
This is the first study analysing VOT and coarticulation as fea-
tures for fake audio detection. We suggest these microfeatures
as standalone features for speaker-dependent forensics, voice-
biometrics, and for rapid pre-screening of suspicious audios,
and as additional features in bigger feature sets for computa-
tionally intensive classifiers.
Index Terms: Microfeature, voicing onset time, VOT, coartic-
ulation, spoof, fake, bonafide, low-resource.

1. Introduction
Recent advances in deep learning have led to dramatic improve-
ments in the automatic generation of natural sounding audios
(e.g., using generative adversarial networks [1] and WaveNet
based models [2]). This has led to their use in a wide vari-
ety of applications including in the design of assistive technolo-
gies, educational technologies, and games. Unfortunately, they
can also be used as a powerful tool for spreading misinforma-
tion and for defeating automatic speaker verification (ASV) and
voice-biometric systems. For example, audio deepfakes spread-
ing false political narratives were regarded as a significant threat
to the 2020 US presidential election [3]. Audio deepfakes have
also been successfully used to fool ASV systems, where in one
case it allegedly led to a loss of USD 243, 000 through a fraud-
ulent bank transfer [3]. These examples highlight the extent of
potential harm of natural sounding spoof audios as well as the
vulnerability presented by the ASV systems, which are com-
monly used in many security systems.

To automatically distinguish between synthetically gener-
ated and bonafide audios, several data-driven and knowledge-
driven countermeasure models have been proposed. While deep
learning based models [4, 5, 6, 7] achieve high performance
by automatically extracting discriminative features from audios,
they require large amount of training data and computational

resources. This makes such models a poor fit for resource-
constrained settings like edge devices and IoT systems, where
these models need to run on backend servers hence requiring
internet connectivity and adding latency to the pipeline. Sim-
ilarly, such models usually do not generalize well in sparse-
data scenarios involving under-resource languages and foren-
sic applications where data is harder to gather. On the other
hand, knowledge-driven models exploit acoustic-level features
such as the fundamental frequency, sequence-related entropy,
and spectral envelope [8] as discriminative features.

Acoustic features may include microfeatures, which corre-
spond to measurements that are made within the average du-
ration of each unit of sound, typically within time intervals of
the order of 1–20 ms [9]. These microfeatures are concomitant
of the voice production mechanisms in humans which include
the air pressure system, vibratory system, and the resonating
system. The effects of all these systems exist at fine levels in
the time and frequency domains. Bonafide audios carry such
details, which we hypothesize are not replicated well in synthe-
sized audios as such fine replication usually does not result in
greater perceptual improvement. Microfeatures usually do not
have direct perceptual correlates, i.e, they are difficult to capture
by the untrained human ear and are also not captured by typical
metrics used for evaluating synthesized audio.

In this work, we explore the effectiveness of two microfea-
tures, Voicing Onset Time (VOT) and coarticulation, for distin-
guishing between bonafide and spoofed speech. VOT is defined
as the length of time that passes between the release of a stop
consonant and the onset of voicing, the vibration of the vocal
folds [10]. VOT has been shown to be correlated with age [11],
speaking rate [12], diseases like Parkinson’s [13], and even de-
pression [14]. Due to differences across individuals, VOT can
be utilized as a microfeature for speaker-dependent classifica-
tion of audio files into bonafide and spoof.

Coarticulation refers to the influences of phonetic segments
on adjacent or near-adjacent segments that are observable in
the acoustic or articulatory patterns of speech [15]. In contin-
uous speech, the anticipatory and residual movements of the
articulators between adjacent phoneme configurations results in
modified acoustic cues. The complex interplay of the articu-
lators and the limited agility of the vocal tract to transform its
shape from one configuration to another results in the mutual
impact of surrounding phonetic units. This is manifested in the
form of altered formant positions for vowels, and the assimi-
lation of adjacent sounds to create altered places and manners
of sound units. Coarticulation has been studied with respect to
the different accents languages [16], how the Consonant-Vowel-
Consonant (CVC) formant space for vowels changes in different
languages [17], for better speech synthesis models [18] and in
speech apraxia [19].

We hypothesize that spoof audios may not be able to accu-
rately capture the VOT and coarticulation and thus by analysing



these features on a per-speaker basis, we can distinguish be-
tween bonafide and synthesized audio. We carry out our analy-
sis using the ASVSpoof2019 Logical Access (LA) dataset [20],
which consists of 6 different models for the generation of syn-
thesized speech and 20 speakers. We find that the Random For-
est (RF) based classifier achieves EER of 25.2% when VOT is
used as the sole feature, 39.3% EER using coarticulation, and
23.5% with the fusion of scores from both models. Moreover,
when VOT and coarticulation are used as input features in a
deep learning model, they reduce the EER by 2%.

While deep neural networks can achieve much lower EERs
compared to just using VOT and coarticulation based RF classi-
fiers, the amount of data required for training may not be avail-
able (e.g., in case of low-resource languages) and their com-
putational complexity makes it difficult to run them on edge
devices (e.g., Amazon Echo). Therefore, we envision two use
cases for our work: (a) the use of our microfeature based clas-
sifier as a lightweight filter that runs on low resource edge de-
vices to flag suspicious audios (the audios can later be sent to
the cloud for deeper analysis on larger neural network based
models) and (b) as new input features to deep learning models
for further improving their robustness.

2. Background Work
We now discuss two categories of related works. One cate-
gory focuses on individual features whereas the other focuses on
models for distinguishing between bonafide and spoof speech.

Gao et al., [8] study human voiced production based fea-
tures including prosody features like jitter, shimmer and spectral
entropy of F0 and found these features to be different between
bonafide and spoof audio. Paul et al., [21] study short-term
spectral features and found that lower frequencies (< 1kHz)
and high frequencies (> 7kHz) are the most useful frequencies
for discriminating between spoof and bonafide speech. Xiao et
al., [22] use high dimensional magnitude and phase based fea-
tures, and long term temporal information up to 0.51s. Relative
phase information based features were exploited in [23], which
out performed MFCC and MGDCC (modified group delay cep-
stral coefficients) on the dataset used. Short-term and long-term
temporal modulation features were used in [24], which also per-
formed better than MFCC and MGDCC. Leon et al., [25] use
mean pitch stability, mean pitch stability range, and jitter as fea-
tures extracted from image analysis of pitch patterns for dis-
crimination between human and spoof speech using a classifier
based on the Gaussian distributions of features. Todisco et al.,
[26] propose new features called CQCC (Constant Q cepstral
coefficient) based on the constant Q transform. It provides a
variable-resolution, time-frequency representation of the spec-
trum. Many deep learning countermeasure models are based on
the CQCC features.

In terms of the models, Chintha et al., [4] use convolutional
layers to extract features from the input audio. They use a wide
block CNN architecture that consist of different kernel sizes to
capture different levels of temporal dependencies. Chen et al.,
[5] use ResNet blocks for the input log filter banks of the au-
dio, with data augmentation like reverberation and background
noise. Halpern et al., [27] propose a CQT-ResNet and GMM
architecture for bonafide and synthesized detection. Tak et al.,
[6] use an ensemble of classifiers that are trained on features of
different spectral resolution in order to detect irregularities at
either high or low frequencies bands. Hu et al., [28] propose
squeeze and excitation, a CNN-based model, which has been
shown to work well on this task.

In contrast to earlier works, we are the first to explore VOT
and coarticulation as microfeatures for spoof audio detection.
Such easy-to-compute features and the models based on them
are useful in low resource conditions, where they can help pre-
screen suspicious audios. Such suspected audios could then
be passed through more resource-heavy models. The proposed
models can also be used for speaker-dependent forensics as well
as to augment existing feature sets used in more computation-
ally expensive spoof detection systems.

3. Microfeatures
3.1. Voicing Onset Time

VOT is of three types: (1) 0 VOT, where the burst and voicing
onset are spontaneous and near simultaneous, (2) positive VOT,
where there is delay between burst and voicing onset, and (3)
negative VOT, where voicing begins during the closure. VOT
is a property of the stop consonants. There are 6 stop con-
sonants in English, 3 voiced: /b d g/, and 3 voiceless: /p t
k/. In some languages including English, stop consonants only
obtain positive VOT of two types: a relatively long, positive
VOT for voiceless stops, and a relatively short VOT for voiced
stops [29]. Short-lag voiced stops have VOT ranging from 0 to
+25ms, with a median value of +10 msec. Long-lag voiceless
stops have VOT ranging from +60 to +100ms, with a median
value of +75ms [30]. We consider various factors when per-
forming per-speaker analysis, e.g., the place of articulation of
the stop phoneme, the following vowel, the following vowel
height. Other factors including gender, age are not explored
since this information is not present in the our dataset. Auto-
matic measurement of VOT can be challenging because of the
short duration of VOT, which is often between 10–20 ms. We
measure the VOTs by using the AutoVOT software [31], which
is a structured prediction algorithm described in [32].

3.2. Coarticulaiton

Coarticulation in an utterance can be captured by analysing the
formant dynamics in a phoneme, where the formants represent
the resonances of the vocal tract. Generally, formant changes
are only analysed for vowels to capture coarticulation. In prior
works, formant dynamics have been used for profiling; for ex-
ample Loakes et al., [33] conclude that F3 is the most speaker-
specific formant frequency range and for specific vowels it can
be used to distinguish between similar sounding speakers.

To capture formant dynamics, we measure F1 and F2 for
the duration of the vowel, and use this to calculate further mea-
sures of formant movements, including Vector Length (VL),
Trajectory Length (TL), Trajectory Change (TC) and spectral
Rate of Change (roc). VL is the length of the vector in the
F1/F2 plane and is an indication of the amount of formant
change over the course of the vowel. Given that formants are
calculated at n points over the duration of the vowel, VL is
calculated as VL =

√
(F11 − F1n)2 + (F21 − F2n)2. TL

takes a closer look into the change of the formants than VL
and is calculated as: TL =

∑n
m=1 VSLm, where VSLm =√

(F1m − F1m+1)2 + (F2m − F2m+1)2. Formant TC is cal-
culated as: TC =

∑n
m=1(F1m − F1m+1) + (F2m − F2m+1).

Spectral roc is defined as the change of the TL over the duration
of the vowel: TL roc = TL

duration . We calculate and compare these
metrics from the spoof and bonafide audios. For each vowel,
we take into consideration one left and right neighbouring con-
sonant. Since coarticulation is affected by several factors, in-
cluding the prosodic overlays [34], language [17], context of
the phoneme, and speaker; we do a per-speaker analysis only in



Table 1: Spoof audio generation systems in ASVSpoof2019 LA.
[35]

System Description

A01 NN based TTS system using the VAE-LSTM as acoustic
model and Wavenet vocoder for waveform generator

A02 NN based TTS system using the VAE-LSTM as acoustic
model and WORLD vocoder for waveform generator

A03 Feedforward NN as acoustic model and WORLD
vocoder for waveform generator

A04 A waveform concatenation TTS
A05 NN VC system using VAE as VC model

and WORLD vocoder for waveform generator
A06 Transfer function based VC system
Total No. of speakers: 20, bonafide: 2580, spoof: 22800

Figure 1: Scatter plot of the VOT for spoof and bonafide audios
for four speakers in the ASVspoof2019 LA dataset. All of the
stop phonemes are included in this scatter plot.

English taking into consideration the neighbouring consonants.

4. Experimental Evaluation
4.1. Dataset

To analyse the VOT and coarticulation, we use the training sec-
tion of the ASVSpoof2019 LA dataset [20]. The spoof audio
samples in this dataset are created using a set of text to speech
(TTS) systems and voice conversation (VC) algorithms detailed
in Table 1.

4.2. Methodology

The AutoVOT library requires word aligned transcript and the
audio signal as input. Therefore, we first use Google ASR
API [36] to transcribe the audio and then use an HMM-based
phoneme segmentor [37] to get word and phone boundaries.
Each audio sample and each word boundary are separately
passed through the AutoVOT model to get the boundaries of
predicted VOT. For formant calculation, we use the formant
tracking algorithm in praat [38], which uses a 25 ms analysis
window (Gaussian), and computes LPC coefficients.

4.3. VOT Analysis

Fig. 1 shows the scatter plot of VOT and the label, spoof or
bonafide, for four speakers in the dataset, with VOT on the x-
axis and label on the y-axis. Observe that while there is an
overlap in the spoof and bonafide VOTs, spoof audios exhibit
much larger variations than bonafide audios. In particular, the
VOT of the stop phonemes ranges from 0 to 100ms in case of
bonafide audio, whereas for spoof audios, it ranges from 0 to
250ms. Similar trend was observed for all speakers.

Fig. 2 shows the mutual information (MI) between VOT

Figure 2: Mutual information score between the VOT and label
spoof and bonafide.

Figure 3: Formant movements for 4 vowels for a single speaker.

and the labels for four stop consonants and vowel combination.
MI for a particular phoneme like /g/ followed by vowel /uh/ is
not consistent over different speakers. For example, for speaker
LA-0088, MI score is 0.7 and for speaker LA-0087, it is 0.2.
No single phoneme alone has good MI over all the speakers.

We also performed a per spoof generation system analysis,
where for each speaker, we divide the audios further into per
system category. The macro F1 of a RBF when trained using all
stop phonemes ranges from 58.9% to 64.0% - averaged across
all speakers. We observe that the vot model performs particu-
larly well for system A05 across all speakers (64.0%) ; on which
the performance increases to 68.3% when only considering the
phonemes where following vowel height is low.

4.4. Coarticulation Analysis

For the bonafide and spoof utterances, we compare the actual
F1/F2 values, average F1/F2 difference in successive frames,
velocity and acceleration in an utterance, VL, TL and TL roc.
All the above metrics measure the change of the formants
over the duration of the vowel. We find that on average, the
above metrics are higher for bonafide than for spoof. Perform-
ing unpaired t test on the metrics gives the following results:
F1 velocity: p-value = 0.00e−06, F2 velocity: p-value =
0.00e−06, F1 acceleration: p-value = 0.00e−04, F2 accel-
eration: p-value = 0.00e−04, VL: p-value = 0.00e−16,
TL: p-value = 0.00e−13, TL-roc: p-value = 0.00e−15 at
alpha = 0.1. All of the above metrics of coarticulation show a
statistically significant result. Fig. 3 shows some of the dif-
ferences in the formant movement for selected phonemes in
bonafide and spoof utterances. The figure illustrates higher rate
of formant movements in bonafide as compared to the spoof ut-
terance. A per system analysis using F1 velocity results in F1



scores of a RBF model ranging from 61.9% to 63.7%.

4.5. Classification results

We demonstrate here the predictive power of using VOT alone
as a feature to distinguish between spoof and bonafide. Each
word consisting of a stop phoneme and a detected VOT is con-
sidered as a separate instance. To use VOT as a feature, we
make one hot vectors the size of the total number of different
phonemes that are being used. For each instance of stop and
vowel combination, we add the VOT value to the one hot vector
at the index of that stop-vowel combination. Using this feature,
we train several machine learning models separately for each of
the 20 speakers. We perform 5-fold cross validation and get the
average result over the folds for each speaker. Table 2 shows the
F1 macro averaged over all the 20 speakers, when using differ-
ent subsets of stop phoneme-vowel combination for 3 models.

The table shows the highest F1-macro achieved using RF on
the subset E which consists of all the stops phonemes followed
by a high vowel. It is expected that VOT for stop phonemes
following a high vowel is longer than following a non-high
vowel. Since the average VOT for spoof audio is higher than
the average VOT for bonafide audio, phone-vowel combina-
tion with shorter VOT are deemed better distinguishing factor
among bonafide and spoof. This also explains how VOT for the
following vowel height=low performs better than when the fol-
lowing vowel height is mid and high. This suggests that VOT
alone can be a distinguishing feature.

Table 2: Macro F1 achieved using RBF, SVM and KNN clas-
sifiers over different subsets of the features used. Subset A
consists of Voiced stops followed by any vowel. B consists
of Voiceless stops followed by any vowel. C consists of all
stops followed by vowel height=high. D consists of all stops
followed by vowel height=mid. E consists of all stops followed
by vowel height=low. F consists of stops with manner of artic-
ulation=bilabial. RF gives the best results.

Model Macro F1 on different subsets of phonemes

A B C D E F
Random Forest 67.2 69.1 64.8 67.7 71.5 69.6

SVM 58.5 57.3 53.4 57.3 64.8 62.8
KNN 58.9 63.3 52.2 59.2 53.8 57.5

We also test the predictive power of the coarticulation met-
rics described before. Similar to VOT, we use one hot vectors to
encode the features for each CVC phoneme combinations and
train random forest, SVM and KNN models on each of the 20
speakers and perform cross validation. Table 3 shows that the
F1 velocity over the duration of the vowel is the most distin-
guishing feature. Spoof audio lacks the smooth transitions of
the phonemes, which is also audible from the utterances and
we expect the velocity and acceleration values to capture such
distinctions between the spoof and bonafide utterances.

Finally, we compare the benefit of using VOT and the dif-
ferent measures of coarticulation in a Convolutional Neural Net-
work model. The model consists of 5 CNN layers, with [1, 4,
16, 64, 256] feature channels in each layer, trained using bi-
nary cross entropy loss. (To be able to use VOT and coartic-
ulation features, we only consider the audio files from which
we could gather both of these features.) Table 4 shows the re-
sults. We first train the model using CQCC features alone and
achieve 5% EER. When using VOT and coarticulation features

Table 3: Macro F1 achieved using RBF, SVM and KNN classi-
fiers using different metrics of coarticulation.

Model Macro F1

f1 velocity f2 velocty TC

Random Forest 67.7 67.0 66.7
SVM 51.9 53.3 53.9
KNN 51.9 53.3 50.1

Table 4: EER using various models.

Model RF RF RF-Fusion CNN CNN
Features Coart VOT Both CQCC CQCC + coart + vot

EER(%) 39.3 25.2 23.5 5.0 3.0
FLOPs 1.5K 0.1K 2K 32M 32M
Params - - - 0.2M 0.2M

together with CQCC, we achieve an EER of 3%. Also observe
that RF based models using VOT, Coarticulation, and combined
features only require 0.1K-2K FLOPS (Floating Point Opera-
tions per sec) compared to 32M FLOPS with the CNN models.
This makes the former particularly suitable to run on resource-
constrained edge devices.

5. Limitations and Conclusion
There are two sources of variability in the pipeline we use in our
work. First, using a pronunciation dictionary to represent each
word into a series of phonemes, may sometimes create a differ-
ence in the expected phoneme occurrence in the audio sample
and the actual phonemes present in the pronunciation, which
can affect the detection of VOT and formant analysis. However,
given the large number of total utterances used in our analysis,
we expect such discrepancies to be rare and unlikely to signif-
icantly affect the classification results. Second, the AutoVOT
system used to detect VOT also has an average error rate of 5
msec. However, this is much smaller than the range of VOTs
exhibited by both spoof and bonafide audios.

From our experiments, we conclude that VOT and coartic-
ulation are discriminative microfeatures, more so VOT. Spoof
speech can exceed the normal range of VOT and on average is
higher than the VOT in bonafide speech. The abnormality of
VOT in spoof speech is an indicator of the fine details in speech
that synthesized speech systems have not been able to capture so
well. Furthermore, formant movements for vowels, occurring in
between consonants (CVC), is lower in spoof than in bonafide.
We have developed simple models on easily measurable micro-
features from voice, which may act as a low resource model for
audio spoof detection. Our results show that such models could
act as relatively cheaper, quicker and reliable screening mecha-
nism before bringing in the cloud-based deep learning models,
consisting of millions of parameters. The systems are advanc-
ing in creating more natural sounding speech by capturing the
macro details of speech, which may be able to fool the human
ear. However, our work shows that inconsistencies of spoof au-
dio also lie in the finer details of speech, that the human ear is
not trained to capture. Spoof audio generation is continually ad-
vancing but replicating the fine level details of the human voice
production mechanism is still far from reach, and not even an
identified goal for now, and this paper is an effort in exploring
two such micro-level features.
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