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Abstract
The performance of neural anti-spoofing models has rapidly

improved in recent years due to larger network architectures
and better training methodologies. However, these systems
require considerable training data for achieving high perfor-
mance, which makes it challenging to train them in compute-
restricted environments. To make these systems accessible
in resource-constrained environments, we consider the task of
training neural anti-spoofing models with limited training data.
We apply multiple dataset pruning techniques to the ASVspoof
2019 dataset for selecting the most informative training exam-
ples and pruning a significant chunk of the data with minimal
decrease in performance. We find that the existing pruning met-
rics are not simultaneously granular and stable. To address this
problem and further improve the performance of anti-spoofing
models on pruned data, we propose a new metric, Forgetting
Norm, to score individual training examples with higher gran-
ularity. Extensive experiments on two anti-spoofing models,
AASIST-L and RawNet2, and several pruning settings demon-
strate up to 23% relative improvement with forgetting norm
over other baseline pruning heuristics. We also demonstrate
the desirable properties of the proposed metric by analyzing the
training landscape of the neural anti-spoofing models.
Index Terms: Spoofing, data pruning, subset selection, auto-
matic speaker verification, ASVspoof, fake audio.

1. Introduction
There has been significant progress recently towards better
voice conversion and speech synthesis systems. These systems
have numerous applications within assistive technologies, gam-
ing and human-computer interaction [1]. However, they can
also be used to generate natural-sounding audios which can
defeat biometric identification methods and automatic speaker
verification (ASV) systems. This can lead to the potential mis-
use of these systems, e.g., voice-based security systems can be
fooled via fake audios thereby granting access to protected in-
formation and restricted areas. Moreover, such techniques can
also be used for spreading misinformation. Given these nega-
tive impacts of spoofed audios, it is important to design systems
that can accurately distinguish between bonafide and synthetic
audios generated using a wide range of techniques.

The ASVspoof community has devised a series of chal-
lenges and datasets to facilitate the research on spoofing detec-
tion systems [2, 3, 4, 5]. The two primary scenarios considered
in these challenges are logical access and physical access. Logi-
cal access (LA) consists of the attacks through voice conversion
and speech synthesis systems including text-to-speech models,
whereas the physical access pertains to the attacks via replayed
audios. Several deep learning based models have been proposed
to tackle the LA attacks which have demonstrated high perfor-
mance through specialized architectures that can automatically
detect the spoofing artefacts present within spectral and tempo-
ral domains [6, 7]. However, these models require a significant

amount of training data to achieve high performance and a low
equal error rate (EER) on the test set, which presents a sig-
nificant challenge when training these models within resource-
constrained settings and compute-restricted environments.

The strategies proposed for resource-constrained spoofing
detection include the construction of lightweight, robust deep
learning based models with limited parameters [7] or the use of
acoustic microfeatures in knowledge-driven models, which can
distinguish between spoofed and bonafide audios [1, 8, 9, 10].
However, the methods for reducing the size of the training
data (or data pruning approaches) have not yet been explored
in the context of spoofed audio detection. In this work, we
consider the task of automatically pruning the ASVspoof 2019
dataset to obtain a representative subset that can be used for
training deep learning based anti-spoofing models in resource-
constrained settings (Figure 1). We consider several heuristics
and scoring metrics to select the most informative training ex-
amples and prune the rest of the data.

1.1. Contributions

The presented research makes the following contributions:

• We apply dataset pruning to neural anti-spoofing models
by scoring individual training examples using different
metrics (normed error, forgetting score) and selecting a
subset of the examples for training, using these scores.

• We propose a new scoring metric, the forgetting norm,
for better dataset pruning.

• Our empirical evaluation on the ASVspoof dataset [11]
and two deep learning-based anti-spoofing models shows
that training the model on the subset selected by forget-
ting norm performs better than the existing metrics (ran-
dom pruning, normed error, and forgetting scores).

2. Background Work
A number of methods have been proposed to quantify the im-
portance of individual training examples in deep learning mod-
els for standard classification tasks [12, 13, 14, 15, 16, 17, 18].
These approaches emphasize the identification of informative
training examples via different heuristics and removing non-
representative samples from the dataset. Toneva et al. [19]
consider the ’forgetfulness’ of a training example by measur-
ing the number of times it is misclassified after being classified
correctly during training. The number of such incorrect classi-
fications represents the forgetting score of a particular example.
The examples that are repeatedly forgotten are selected to con-
struct a smaller training subset without significantly affecting
the generalization performance. Paul et al. [17] propose to score
the examples by the norm of the gradient (GraNd) and the norm
of the error vector (EL2N). Both these measures are found to
be correlated and any of these can be used for removing a large
number of less informative examples while retaining the test



Figure 1: The overall framework of data pruning for training anti-spoofing models. In step (1), we train a neural anti-spoofing on the
complete dataset (ASVspoof in our case) and record multiple scores for each training example: normed error (EL2N score), forgetting
score, and forgetting norm. In step (2), we create a data subset by ranking the examples according to the computed score and selecting
the most informative examples. We then use this subset in step (3) to train the complete model and then evaluate on the test dataset.

accuracy on multiple standard vision datasets (CIFAR-10 and
CIFAR-100) and convolutional neural networks (ResNet). An-
other interesting finding is that the loss landscape in the early
training epochs contains sufficient information which can be
leveraged to construct a smaller subset of the training data with-
out training the neural network for all the epochs.

Coreset selection is another approach of reducing the
dataset size by extracting representative samples [20, 21, 22,
23]. To construct the theoretical error boundaries, many coreset
selection algorithms require the problem to demonstrate a spe-
cial structure like convexity. Hence, the application of coreset
algorithms is limited in deep learning tasks and optimal solu-
tion is seldom guaranteed for the downstream tasks. In speech
tasks, especially automatic speech recognition (ASR), subset
selection algorithms focus on the generation of phonetically
rich and diverse subsets through phoneme level error models
[24, 25, 26, 27, 28, 29, 30, 31, 32]. Awasthi et al. [32] propose
an objective function to select a subset of sentences for train-
ing an ASR personalization model. The created subset contains
more challenging and informative sentences than a random se-
lection approach. These error models for ASR and other speech
tasks can provide good insights on the properties of representa-
tive subsets but are not directly applicable to anti-spoofing due
to the different nature of the anti-spoofing problem.

3. Preliminaries
Consider a neural anti-spoofing model f(x; θ) (θ ∈ Rd) that
is trained on a labelled dataset x ∈ Dl (e.g., ASVspoof). Dl

consists of pairs of audio and the corresponding label (bonafide
or spoof) and θ represents the neural network parameters. Our
goal is to prune Dl to obtain a subset Bl such that the perfor-
mance of the anti-spoofing model f(x; θ) after training on Bl is
better than random pruning. The performance of anti-spoofing
is commonly evaluated via equal error rate (EER) or the ASV-
centric tandem decision cost function (t-DCF) [33].

Let σ be the softmax function given by σ (z1, . . . , zK)k =

exp {zk} /
∑K

k′=1 exp {zk′}. The output of the anti-spoofing
model is then a probability vector p(x, θ) = σ(f(x, θ)), where
f(x; θ) are the logit outputs of the neural anti-spoofing model.

4. Method
We now describe three metrics for scoring individual training
which can facilitate dataset pruning. The scores calculated via
these metrics are used by the pruning algorithm to construct a
subset of the training data by selecting the highest error (most
informative) examples.

4.1. EL2N score [17]

The normed error (or the EL2N score) [17] of a training exam-
ple (xi, yi) at epoch t is defined as,

E
∥∥f (

xi; θ
t)− yi

∥∥
2

(1)

It is essentially the norm of the difference between the pre-
dicted class probabilities (for spoof and bonafide classes) and
the ground-truth label encoded as one-hot vector. An exam-
ple that is more difficult to classify will have a high normed
error as compared to an easier example. A desirable property
of the EL2N score is that it captures the difficulty of a train-
ing example with greater granularity as compared to the other
metrics that are discrete, e.g., forgetting scores. Hence, the er-
ror normed scores computed after a few training epochs can be
used for data pruning. We refer to the EL2N score computed at
epoch t as EL2Nt.

4.2. Forgetting score [19]

Let the binary variable accti = 1ŷt
i=yi

indicate whether the
training example i is correctly classified at epoch t. A forget-
ting event is a point in training when the neural network mis-
classifies a training example after classifying it correctly, i.e.,
accti < acct−1

i [19]. The forgetting score of a particular train-
ing example is the number of times a training example under-
goes a forgetting event.

N∑
t=1

1
accti<acct−1

i
(2)

Toneva et al. [19] demonstrate that the examples with a
higher forgetting score are more informative examples and can
be used to create a smaller subset for training the neural net-
work. As forgetting events occur throughout the training, the
forgetting scores are calculated towards the end of the training.
Hence, they are more stable than the other metrics which are
calculated on a particular training epoch early in training, e.g.,
EL2N score.

4.3. Forgetting norm

We introduce a new scoring metric, forgetting norm, which is
defined as the increase in normed error across two successive
epochs. Let nt

i = 1EL2Nt
i>EL2Nt−1

i
be a binary variable indicat-

ing whether the EL2N score at epoch t is greater than the EL2N
score at epoch t-1. Forgetting norm is then defined to be,

N∑
t=1

nt
i ∗ (EL2Nt

i − EL2Nt−1
i ) (3)



Table 1: Pooled EER for the four strategies of pruning the training set evaluated over multiple pruning fractions and different neural
anti-spoofing models. Each score is calculated by averaging over 10 runs and is then used for a particular pruning strategy. We do
three independent runs for each result for 5 epochs and report the mean test EER. The forgetting norm consistently demonstrates the
lowest EER at various pruning fractions and architectures. In the last column, we report the EER on the original dataset without any
pruning.

Architecture Pruning Percentage Pruning Strategy No Pruning

Random EL2N Forgetting Score Forgetting Norm

AASIST-L 30% 9.27 7.29 7.15 6.62 6.17
60% 15.14 13.01 12.69 11.63
90% 18.14 17.74 17.95 16.30

RawNet2 30% 14.68 13.39 11.09 9.85 8.82
60% 16.55 15.65 14.01 12.90
90% 18.38 18.01 17.23 16.02

Table 2: Breakdown EER (%) performance of all 13 attacks that exist in the ASVspoof 2019 LA evaluation set, pooled min t-DCF,
and pooled EER on a pruning fraction of 60% and AASIST-L model. The scores for four pruning strategies are reported. F-Score:
Forgetting Score, F-Norm: Forgetting Norm

Score A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 t-DCF EER
EL2N 4.64 7.35 1.22 6.16 2.29 11.3 1.23 10.92 5.88 15.55 19.27 36.16 19.50 0.33 13.01
F-Score 2.40 5.66 1.20 4.31 1.87 8.75 1.12 7.91 4.52 15.40 20.98 33.60 19.50 0.32 12.69
F-Norm 2.32 4.70 0.41 3.60 1.22 7.26 0.95 6.39 4.35 12.40 18.26 33.13 18.44 0.29 11.63

which expands to,

N∑
t=1

nt
i ∗ (E ∥f (xi; θt)− yi∥2 −E ∥f (xi; θt−1)− yi∥2) (4)

In other words, the forgetting norm is the cumulative sum
of the difference of EL2N scores over n training epochs, com-
puted in the epochs where EL2Nt > EL2Nt−1 (and not only
the epochs where a forgetting event occurs). Compared to the
forgetting score that only gets incremented in case of an actual
misclassification (as normed error crosses a threshold), forget-
ting norm captures the more subtle error increase that may result
in a misclassification in later epochs. Hence, forgetting norm
combines the granularity of normed error (EL2N) with the sta-
bility of forgetting scores.

4.4. Dataset Pruning Algorithm

We now present the dataset pruning algorithm for neural anti-
spoofing models (Algorithm 1). We train the model on the
ASVspoof dataset and calculate the score for each example ac-
cording to the selected metric. We then sort the examples in a
descending order of the calculated scores and select the highest
scoring examples.

Algorithm 1: Dataset Pruning for Neurals Anti-
Spoofing Models

Input: Anti-Spoofing Model f , Dataset Dl, Pruning
Fraction f , Pruning Strategy s, Training Epoch e
S ← Train f on Dl and compute scores for each training
example on epoch e according to strategy s
subsetSize← (1− f) ∗ len(Dl)
S ← sort(S, descending = true)
Bl ← S[0 : subsetSize]

5. Experiments

5.1. Models

We use two neural anti-spoofing models: AASIST-L [7] and
RawNet2 [6] for our data pruning experiments.

AASIST-L: AASIST-L [7] is a lightweight end-to-end au-
dio anti-spoofing model based on graph neural networks. The
graph modules and heterogeneous stacking graph attention
layer can efficiently model spoofing artefacts present in tem-
poral and spectral domains. The max graph operation detects
various spoofing artefacts in parallel and combines them.

RawNet2: RawNet2 [6] is also an end-to-end audio anti-
spoofing model. It is based on a convolutional neural network
architecture that ingests raw speech and outputs the prediction:
bonafide or spoof. An important part of the RawNet2 architec-
ture is a GRU layer containing 1024 hidden nodes which can
produce a single utterance-level representation by aggregating
frame-level representations.

5.2. Dataset

The experiments are carried out on the logical access (LA) part
of the ASVspoof 2019 dataset [11]. This dataset is split into
three parts: train, development, and evaluation set. The attacks
present in the train and development sets were created from six
spoofing algorithms (A01-A06). The attacks in the evaluation
set were created from thirteen algorithms (A7-A19). The prun-
ing is done on the train set only, and the evaluation is done on
the original (complete) evaluation set. We consider three prun-
ing percentages: 30%, 60%, and 90% to mirror the low, mod-
erate and extreme resource-constrained settings. The pruning
is performed separately on the spoof and bonafide portions in
order to maintain the ratio defined in the ASVspoof dataset.



5.3. Metrics

To evaluate the performance of the anti-spoofing model on the
pruned dataset, we use equal error rate (EER) and the minimum
tandem detection cost function (t-DCF) [33]. EER measures the
performance of standalone anti-spoofing system whereas min
t-DCF evaluates the combined performance of the automatic
speaker verification system and the anti-spoofing system.

5.4. Implementation Details

The scoring metrics are implemented using the PyTorch li-
brary in Python. The official implementation of AASIST-L and
RawNet is used. We use a single 40GB NVIDIA A100 GPU
for running all the experiments. For calculating the scores for
each training example, we initiate a computation step after each
epoch and record the score (EL2N, forgetting Score, forgetting
norm). The scores in each epoch are averaged over 10 runs and
then used for a particular pruning strategy. We then train the
model for 5 epochs on the pruned dataset. For each test EER
and min t-DCF reported, we do three independent runs (with
independent model initialization) and calculate the average.

5.5. Results

Table 1 shows the results of pruning experiments via different
pruning strategies across multiple neural anti-spoofing models.
For each architecture and the scoring metric, we consider
multiple pruning percentages and report the pooled EER. We
find that forgetting norm consistently performs better than
the pruning performed on the basis of random, EL2N, and
forgetting scores for the majority of pruning percentages. For
AASIST-L and 60% pruning percentage, we notice a 23%
relative drop in the EER as compared to the random pruning
(15.14% vs 11.63%) and an 8% relative drop as compared to
the forgetting score (12.69% vs 11.63%).

Comparison of individual attacks. Table 2 shows a
performance comparison for each of the individual attacks
present in the ASVspoof LA evaluation subset. We again ob-
serve a consistent improvement in pooled EER and pooled min
t-DCF for forgetting norm. For multiple attacks, substantial
improvements are observed for forgetting norm as compared to
the forgetting score, e.g., for the A09 attack, forgetting norm
shows a 65% relative improvement (1.20% vs 0.41%).

Properties of Forgetting Norm. To understand the under-
lying properties of the forgetting norm which contribute to its
better performance, we analyze the training landscape by com-
puting the scores (forgetting score and forgetting norm) for each
example in every epoch (Figure 2). We find that the forgetting
norm demonstrates a continuous behavior as compared to the
forgetting score which only has discrete increments. This al-
lows the forgetting norm in the early training epochs to be used
for pruning effectively, a property that is not present in the for-
getting scores. We also study the correlation between forget-
ting scores and forgetting norm for each training example in
ASVspoof (Figure 3). We find that multiple examples with the
same forgetting score can have different values of the forget-
ting norm, e.g., if an example is misclassified once, the forget-
ting norm will assign a continuous score to that event whereas
the forgetting score will have the discrete value of one. Addi-
tionally, the forgetting norm can be non-zero even in the cases
where the forgetting score is zero, which can facilitate the early
prediction of a misclassification event when it has not yet oc-

curred, e.g. if the normed error of a correctly classified example
consistently increases across multiple epochs, there is a high
probability that it will be misclassified in a later epoch.

Figure 2: Comparison of forgetting score and the forgetting
norm of the examples over multiple training epochs. Note that
the forgetting scores increase in discrete steps after each epoch
whereas the forgetting norm adopts a continuous trajectory.

Figure 3: The forgetting score and the forgetting norm of the ex-
amples in the ASVspoof training set. For each forgetting score,
there are multiple examples that have a varying forgetting norm
which aids in differentiating those examples based on their im-
portance and hence allows for more deterministic pruning.

6. Limitations and Conclusion
We now discuss some limitations of our approach and the po-
tential future directions for resource-constrained spoofed audio
detection. Our pruning experiments were performed on two
end-to-end (E2E) neural anti-spoofing models. It needs to be
investigated if data pruning is applicable to other types of anti-
spoofing architectures that do not operate directly on raw speech
waveform. While we investigated the pruning approaches for
anti-spoofing on the standard ASVspoof dataset, it needs to be
examined if the techniques are applicable to any other datasets
that are used in training spoofing countermeasure models. Ad-
ditionally, it should be explored if the ASVspoof subsets cre-
ated through the presented pruning approach demonstrate rea-
sonable performance on other spoofing countermeasures too,
e.g., GMM-based classifiers for separating spoofed audio from
bonafide speech. For future work, it will be interesting to ex-
plore the properties of the subsets of ASVspoof created via
data pruning approaches and analyze the composition of various
types of attacks in those subsets. It will also be useful to lever-
age data pruning for other related tasks like partially spoofed
audio detection, replay attack identification, and spoofing aware
speaker verification.
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