
Learning Fast and Slow: Towards Inclusive
Federated Learning

Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar
Ayyub Qazi, Ihsan Ayyub Qazi, and Agha Ali Raza

Department of Computer Science, Lahore University of Management Sciences
{18030016,18030047,21100119,zafar.qazi,ihsan.qazi,agha.ali.raza}@lums.edu.pk

Abstract. Today’s deep learning systems rely on large amounts of use-
ful data to make accurate predictions. Often such data is private and thus
not readily available due to rising privacy concerns. Federated learning
(FL) tackles this problem by training a shared model locally on devices
to aid learning in a privacy-preserving manner. Unfortunately, FL’s ef-
fectiveness degrades when model training involves clients with heteroge-
neous devices; a common case especially in developing countries. Slow
clients are dropped in FL, which not only limits learning but also sys-
tematically excludes slow clients thereby potentially biasing results. We
propose Hasaas; a system that tackles this challenge by adapting the
model size for slow clients based on their hardware resources. By doing
so, Hasaas obviates the need to drop slow clients, which improves model
accuracy and fairness. To improve robustness in the presence of statistical
heterogeneity, Hasaas uses insights from the Central Limit Theorem to
estimate model parameters in every round. Experimental evaluation in-
volving large-scale simulations and a small-scale real testbed shows that
Hasaas provides robust performance in terms of test accuracy, fairness,
and convergence times compared to state-of-the-art schemes.

Keywords: Federated Learning, Fairness, Robustness, Developing Countries

1 Introduction

Today’s deep neural networks (DNNs) power a wide variety of applications rang-
ing from image classification, speech recognition, to fraud detection [21]. DNNs
rely on large amounts of data to make accurate predictions and draw useful in-
ferences. However, such data is often private1 and may not be readily available
for centralized collection due to rising privacy concerns and growing adoption
of data privacy regulations (e.g., Europe’s GDPR [36] and California Consumer
Privacy Act [7]). A lack of useful data can limit the effectiveness of DNNs [4].

Federated learning (FL) is a distributed machine learning approach that tack-
les this problem by training a shared model over data that is distributed across

1 Private data includes any personal, personally identifiable, financial or sensitive user
information [14].



2 M. Munir et al.

multiple edge devices (e.g., mobile phones), which share model parameters with
a centralized server to aid learning in a privacy-preserving manner [26,38]. Unfor-
tunately, FL’s effectiveness degrades when model training involves heterogeneous
client devices [20,5]; a common case especially in developing countries [3,32,2,37].
With FL, slow clients are dropped from the training process to reduce conver-
gence delays. However, such an approach can degrade test accuracy and reduce
fairness due to the systematic exclusion of slow clients [20,27].

We propose Hasaas;2 a system that tackles this challenge by (i) adapting
the model size based on client device capabilities (which we call Differential
Model Serving or DMS ), (ii) using a sub-model selection strategy based on post-
activation values, and (iii) using insights from the Central Limit Theorem (CLT)
to improve model robustness in the presence of statistical heterogeneity [15].

Serving small models to slow clients and large models to fast clients offers
two key benefits. First, it reduces the model training time for slow clients, which
decreases their chances of being dropped from the training process thereby im-
proving fairness. Second, it can achieve a better tradeoff between model perfor-
mance and convergence times compared to serving a single model to all clients.3

However, realizing these benefits requires answering two key questions: Given a
model, how should we select a sub-model to serve to slow clients? and how should
we aggregate model parameters from slow and fast clients?

Hasaas selects a sub-model based on post-activation values of neurons. In
particular, it bootstraps the FL process by choosing a random sub-model and
allows slow clients to train the sub-model for the first r rounds. Then after every
r rounds, it chooses a new sub-model based on post-activation values.4 This
allows neurons with small activation values to be excluded from the sub-model,
which improves performance. The neurons that have small activation values are
considered less important as they contribute less to the model’s output and have
a smaller impact on weight updates during training.

With FL, a random set of clients are picked in each round for model training,
which changes the proportion of slow and fast clients in each round. This can
reduce model accuracy, especially when there is statistical heterogeneity in data
across clients. To improve robustness in such scenarios, Hasaas aggregates model
parameters in each round using insights from the CLT by learning the distribu-
tion of the sample mean of the model parameters [15].5 Hasaas then randomly
draws each model parameter from the learned distribution rather than always
using the sample mean. This improves performance especially when there is high
variance in the model parameters shared by each client.

We carry out extensive evaluation using (i) large-scale simulations involving
the LEAF benchmarking framework for learning in FL settings [9] and (ii) small-
scale real testbed experiments involving mobile clients with heterogeneous device

2 In the Urdu language, Hasaas means sensitive.
3 Small models can reduce accuracy, whereas large models lead to slow convergence.
4 In case of CNN models, it prunes filters too.
5 Thus, in every training round, we estimate the mean and variance of each model
parameter, which together uniquely identifies a Normal distribution.



Learning Fast and Slow: Towards Inclusive Federated Learning 3

capabilities. We compare Hasaas’s performance with several notable schemes
including FedAvg [26], Adaptive Dropout [6], and FedProx [33] and carry out
a detailed ablation study to quantify the benefits of each component of Hasaas.
Experiments show that Hasaas achieves robust performance in terms of test
accuracy, convergence, and fairness across diverse datasets and models.

Taken together, we make the following contributions in this work.
– We design Hasaas; an adaptive model serving framework for FL that adapts

model sizes based on client capabilities (§4). It reduces the computational and
communication costs in FL by training on a subset of the model’s weights and
exchanging smaller sub-models between slow clients and the server instead of
the full model updates.

– To achieve better generalization, we propose a CLT-based approach, which
outperforms other approaches including FedAvg, Adaptive Dropout, and Fed-
Prox (§4).

– We carry out extensive evaluation using large-scale simulations and small-
scale testbed experiments involving real smartphones over a wide variety of
real-world federated datasets (§5). We make our code available on GitHub.6

for the benefit of the community.

2 Background and Related Work

Our work focuses on synchronous FL algorithms that proceed in training rounds.
These algorithms aim to learn a shared global model with parameters embodied
in a real tensor Γ from data stored across several distributed clients. In each
round t ≥ 0, the server distributes the current global model Γ t to the set of
selected clients St with a total of nt data instances. The selected clients locally
execute stochastic gradient descent (SGD) on their data and independently train
the model to produce the updated models {Γ k

t |k ∈ St}. The update of each client
k can be expressed as:

Γ k
t = Γ t − αHk

t , ∀k ∈ St (1)

where Hk
t is the gradients tensor for client k in training round t, and α is the

learning rate chosen by the server. Each selected client k then sends the up-
date back to the server, where the new global model (Γ t+1) is constructed by
aggregating all client-side updates as follows:

Γ t+1 =
∑

∀k∈St

nk

nt
· Γ k

t (2)

where nk is the number of data instances of client c and nt =
∑

∀k∈St
nk. Hence,

Γ t+1 can be written as:
Γ t+1 = Γ t − αtHt (3)

where Ht =
1
nt

∑
k∈St

nkH
k
t .

6 https://github.com/FederatedResearch/hasaas

https://github.com/FederatedResearch/hasaas


4 M. Munir et al.

Fairness in FL. Due to the heterogeneity in client devices and data in fed-
erated networks, it is possible that the performance of a model will vary signifi-
cantly across the network. This concern, also known as representation disparity,
is a major challenge in FL, as it can potentially result in uneven outcomes for
the devices. Following Li et al. [22], we provide a formal definition of this fairness
in the context of FL below.

Definition. We say that a model W1 is more fair than W2 if the test perfor-
mance distribution of W1 across the network is more uniform than that of W2,
i.e., std{Fk(W1)}k∈[K] < std{Fk(W2)}k∈[K] where Fk(·) denotes the test loss on
device k ∈ [K], and std{·} denotes the standard deviation.

We note that there exists a tension between variance and utility in the def-
inition above; in general, the goal is to lower the variance while maintaining
a reasonable average performance (e.g., average test accuracy). Several prior
works have separately considered either fairness or robustness in FL. For in-
stance, fairness strategies include using minimax optimization to focus on the
worst-performing devices [18,39] or reweighting the devices to allow for a flexible
fairness/accuracy tradeoff (e.g., [23]).

2.1 Related Work

Several recent and ongoing efforts aim to tackle system and statistical hetero-
geneity in FL [6,8,13,10,24,33,20,19,39,26]. In this section, we discuss works that
are most closely related to our study.

System heterogeneity. A number of schemes aim to reduce the impact of
client heterogeneity by serving smaller models. These schemes differ based on
(i) whether they do model pruning on the client-side [19] or the server-side [6],
(ii) the criteria used for pruning (e.g., [12,8]), and (iii) whether they serve a
single model to all clients or not [19,8,6]. For example, PruneFL [19] performs
initial model pruning at a selected client and further adaptive pruning on the
server-side. It serves the same pruned model to all clients. Moreover, because
the initial model pruning is carried out on only one selected client and its data,
the pruned model can be biased towards the selected client. HeteroFL [12] trains
local models based on clients’ device characteristics. It pre-defines subset models
with different complexity levels and assigns the same model to clients belonging
to the same complexity level. However, the subset models are statically defined,
which limits model performance. AFD [6] trains a subset model using either a
single-model or multi-model serving approach. With the former approach, the
same model is served to each client and monitored for average training loss.
A positive score is given for decreasing loss, while a new model is served if
loss increases. While AFD outperforms Federated Dropout (FD), which relies
on random dropping to select sub-models, such a strategy can trigger frequent
model changes, which can negatively affect model performance. We demonstrate
this in Section 5.7

7 With multi-model AFD, a different subset model is used by each client, all of the
same size. However, training with a small fraction of clients in each round – a typical
scenario in FL – makes the algorithm behave randomly, just like the FD scheme [6].



Learning Fast and Slow: Towards Inclusive Federated Learning 5

Statistical heterogeneity. A number of approaches aim to tackle statistical
heterogeneity by either modifying the (i) client selection strategy of FL (e.g.,
[25]), (ii) FedAvg aggregation method (e.g., [13]) or (iii) objective function to
include a regularization term (e.g., [33]). For example, PFedR [25] is a client
selection strategy in which the server generates dummy datasets from the inver-
sion of local model updates, identifies clients with large distribution divergences,
and aggregates updates from highly relevant clients only. Generating dummy
data from client updates raises privacy concerns. Also, in case of secure multi-
party aggregation where client updates are meaningless without aggregation,
generating dummy data from those updates will not help in identifying client
distribution divergences. In such cases, this approach may not yield the desired
results. FedDNA [13] is a parameter aggregation method for FL that aggregates
gradient and statistical parameters, separately. While the gradient parameters
are aggregated using FedAvg, the statistical parameters are aggregated collabo-
ratively to reduce the divergence between the local models and the central model.
This technique is only applicable to models with a batch normalization layer.

FedProx [33] uses partial work from resource-constrained devices to tackle
system heterogeneity and adds a regularization term in the FedAvg objective
function to improve performance under statistical heterogeneity. However, in-
corporating partial updates from slow clients can reduce test accuracy if the
model is not trained enough.8 In addition, downloading a large model from the
server can still be a significant burden for slow clients, particularly those located
in regions with limited connectivity.

Hasaas tackles both system and statistical heterogeneity by combining the
benefits of differential model serving and CLT-based aggregation. It extends the
state-of-the-art in terms of system heterogeneity by employing an approach in
which slow clients are served a small model whereas the fast clients continue to
receive the global model. This is unlike AFD and PruneFL that serve smaller
models to all clients, which can degrade model accuracy. Moreover, unlike Het-
eroFL that uses pre-defined subset models, Hasaas dynamically updates small
models based on average post-activation values in the global model. As a result,
sub-models that are not performant are discarded as training progresses. We
delve deeper into the design of Hasaas in the following section.

3 Problem Motivation

It is common for distributed clients in FL to exhibit considerable heterogeneity
in terms of computational resources (e.g., number of CPU cores, RAM size) and
network bandwidth [8,33]. This heterogeneity impacts both the model accuracy
and the training time of the FL process [9]. Consequently, resource-constrained
edge devices (e.g., entry-level smartphones), which are prevalent in developing
countries, are either unable to train models due to their limited compute and

8 Moreover, if the slow clients are unable to run the large model due to resource
constraints, they cannot participate in the training process.



6 M. Munir et al.

Fig. 1: Impact of systems heterogeneity on test accuracy and fairness in FedAvg for
different client drop rates and datasets. As the fraction of slow clients increases, the
test accuracy, and fairness decrease.

memory resources or take a prohibitively long time in training [26,32,28]. Ac-
cording to a study involving one of the largest online social networks, 57% of
smartphones in developing regions, had 1GB or less RAM [29].9 Such entry-level
smartphones frequently operate under low memory regimes, which is known to
degrade performance [32,37,2]. Unfortunately, slow clients (or stragglers) are
dropped in FL schemes (e.g., FedAvg) for efficiency reasons because waiting for
slow clients to report their updates can increase convergence times. However,
dropping slow clients can (i) degrade test accuracy and (ii) lead to unfairness.

System heterogeneity degrades robustness and fairness. To evaluate the
impact of slow clients in FedAvg on model accuracy and fairness, we simulate
different levels of system heterogeneity using LEAF [9]. In particular, we vary
the client drop rate (CDR)10 from 10% to 90% and carry out evaluation on
multiple real datasets including FEMNIST, FMNIST, CIFAR-10, and Sent140.
Figure 1 shows that with FedAvg, system heterogeneity negatively impacts both
model robustness as well as fairness.11 In particular, test accuracy decreases as
CDR increases across all datasets whereas the variance of the test loss (across
clients), which captures model fairness, generally increases with CDR.

Homogeneous model serving (HMS) either slows convergence or de-
grades model performance. To quantify the impact of serving the same model
to all clients we train a CNN model over the FEMNIST dataset [9] and mea-
sure the test accuracy and the time to complete 100 training rounds on two real
smartphones, i.e., Nokia 1 (Quadcore, 1GB RAM) and Nexus 6P (Octacore,
3GB RAM). These devices represent slow and fast clients, respectively.12 We
find that with FedAvg, serving the same model to both slow and fast clients
leads to slow convergence. In our testbed, it took 15.9 hours with FedAvg to
complete 100 train rounds. To address this system heterogeneity, one can serve

9 In 2018, ∼300 million Android phones shipped globally had 1GB or less RAM [1].
10 CDR is the fraction of slow clients in the system. With FedAvg, such clients are

dropped from the training process.
11 Similar to Li et al. [22], we capture model fairness using the variance of test loss

across clients. Thus, the more uniform the loss distribution is, the fairer the model.
12 The memory specifications of these devices represent a wide range of smartphones.

In developing regions, phones with 1GB or less RAM had a market share of 57%
compared to 20% in developed regions. Phones ≥ 3GB RAM had less than 25%
market share in developing regions and over 50% share in developed countries [29].



Learning Fast and Slow: Towards Inclusive Federated Learning 7

Fig. 2: Time to complete 100 rounds of training on a real testbed as a function of test
accuracy for different model drop rates (MDR).

a smaller model (e.g., a subset of the original model) to all clients [8]. Figure
2 shows that indeed serving smaller models reduces the time to complete 100
rounds. However, it also reduces test accuracy. For example, increasing the model
drop rate (MDR) (i.e., the pruning percentage) from 30% to 50% reduces the
test accuracy by 4.2%. Another approach is to serve a smaller model to only slow
clients while the faster clients continue to train on the large model (we refer to
this approach as Differential Model Serving, which is part of Hasaas). We find
that such an approach considerably improves test accuracy while also achieving
significant reductions in convergence time. For example, when the MDR is 50%,
DMS improves test accuracy by 9.4% over HMS with similar convergence times.
However, we see diminishing returns beyond 50% MDR because in this regime
the fast client becomes the bottleneck as opposed to the slow client.

In summary, serving a single model to all clients presents a tradeoff between
convergence time and model accuracy. DMS can address this tradeoff by serving
models of different sizes to slow and fast clients.

4 Design

Hasaas tackles both system heterogeneity and the statistical challenges with
heterogeneous data using the following design features:

1. Differential model serving. Clients are served models with different sizes
based on their capabilities.

2. Sub-model selection using activations. Small sub-models are selected for slow
clients based on post-activation values.

3. Model generalization using insights from the Central Limit Theorem. To im-
prove performance robustness, especially over non-IID datasets, we use a
CLT-based approach to choose model parameters.

A. Differential Model Serving. DMS has several benefits compared to serving
the same model to all clients participating in FL. First, due to the large hetero-
geneity in mobile device characteristics, training a single model over all clients



8 M. Munir et al.

can lead to widely different training times, which can result in frequent dropping
of slow clients from FL,13 potentially leading to unfairness across clients [8,5,22].
Second, it is difficult to choose a single model that allows all clients to partic-
ipate in FL training while achieving high accuracy; small models can degrade
model accuracy, whereas large models lead to the dropping of slow clients. DMS
addresses these challenges by allowing model sizes to be adapted based on device
characteristics such as the number of CPU cores, memory size, and GPU char-
acteristics (if present). Thus, slow clients are served smaller models than faster
clients, which can improve fairness by reducing the dropping of clients from the
FL process.

B. Sub-model Selection. Given a model size, a key design question in Hasaas
is, “which sub-model should we serve to slow clients?” There are many possible
sub-models one can pick. In a feed-forward neural network, suppose we allow
dropping of neurons from all layers including the input and output layers, then
the number of distinct sub-models are lower bounded by

(
n1

⌊f.n1⌋
)(

n2

⌊f.n2⌋
)
..
(

nl

⌊f.nl⌋
)
,

where ni is the number of neurons in layer i, (1−f) is the pruning fraction (i.e.,
fraction of neurons dropped from each layer), and l is the total number of layers.
Finding the best sub-model from among such a large set of possible sub-models is
challenging. We address this challenge with two strategies. First, we bootstrap
the FL process by choosing a random sub-model and allowing slow clients to
train over the sub-model for the first r rounds. This allows us to assess the parts
of the sub-model that contribute the most to the learning task. Second, after
every r rounds, we choose a new sub-model based on the post-activation values
of neurons (in case of CNN models, filters too) [35]. This allows neurons with
small activation values to be excluded from the sub-model. This approach can
enable better model selection than randomly picking models in each round or
choosing a different random model in each round [8].

C. Model Generalization. Training a model in FL is challenging due to the
statistical variations in data distributed across clients, which impacts both model
accuracy as well as model convergence [8,33]. This is exacerbated by the fact that
in each round, FL picks k random clients for training from a pool of N clients. As
a result, choosing the sample mean of the weights of each model parameter across
clients in the current round may not be representative of clients picked in the
next round, especially when k is much smaller than N , which is a typical case in
FL [26].14 To generalize model training, we use insights from CLT, which posits
that the distribution of the sample mean of IID random variables converges
to a Normal distribution.15 We consider the setting, where each client i draws
independent samples from a distributionD with finite mean µ and finite variance
σ2. Let Xi

j ∼ D be the random variable denoting weight of the jth model

parameter for client i. Then FL aims to learn the average X̄j =
∑N

i=1 piX
i
j

13 Some clients may not be able to run large models at all due to memory constraints.
14 While the sample mean is an unbiased estimator of the population mean, the variance

of the sample mean depends on the sample size (i.e., the number of clients).
15 If each client’s model weights follow a different distribution, one can use generaliza-

tions of CLT, such as the Lyapunov CLT and Lindeberg CLT [15].



Learning Fast and Slow: Towards Inclusive Federated Learning 9

across all clients, where pi is the proportion of samples trained by client i. CLT
posits that X̄j converges in distribution to the Normal distribution with mean
µ and finite variance σ2/N . Thus, larger the variance, the more imprecise is our
estimate of X̄j . To achieve better generalization, we randomly draw samples from
the learnt sample mean distribution and use them for the next round, where a
new set of random clients are selected for model training.

By drawing random samples from the sample mean distribution rather than
just using the sample mean in each round, we ensure that clients with large
values for the model parameters do not skew the learning process. To estimate
the distribution of the sample mean, we use parameters shared by clients in each
round independently. As a result, there is no pooling of parameter values across
rounds due to dependencies introduced by SGD. In our evaluation, we show that
this strategy improves accuracy, robustness, and convergence speed compared to
just using the sample mean.

Algorithm 1: Hasaas

Input: Model Dropout Rate (k%), Pruning Round (r)
Server executes:
Initialize: Global model W0, mask M ← 0;
for each round t = 1, 2, . . . , T do

if t > 1 then
Select sub-model wt from Wt based on mask M

else
wt ← Random selection k% ;
M ← Indexes of sub-model wt;

end
Ct ← (select n clients randomly) ; ▷ n ≤ N
Send Wt or wt to Ct based on their device characteristics
for each client c ∈ Ct do

if c is slow then
Train sub-model wt:
activationsct , w

c
t+1 = ℓ(wt, c) ;

W c
t+1 = Broadcast(wc

t+1,M) ;
else

Train large model Wt:
activationsct ,W

c
t+1 = ℓ(Wt, c) ;

end
end

activationst =
1
n

∑
c∈Ct

activationsct ;

µ =
∑

c∈Ct

sc
St

W c
t+1 ; ▷ St: Total samples

σ =

√√√√ ∑
c∈Ct

sc(W
c
t+1 − µ)2

St−1
;

σ = σ√
t
;

Wt+1 = N (µ, σ2) ;
if (t mod r) == 0 then

Update M using activations of dense layer and ℓ1-Norm of CNN filters
end

end

4.1 Algorithm

At the start of the FL process, the server initializes a global model W0 and a
maskM to keep track of the smaller model sent to the slow clients; see Algorithm



10 M. Munir et al.

1. The server randomly picks a smaller model w0 (which we call a sub-model)
from the global model W0. It does so randomly at the start as it does not have
any prior information to effectively choose a sub-model. The server selects n
clients randomly and sends the sub-model w0 or the large model W0 to selected
clients based on their device characteristics. Let Ct denote the set of all clients
selected in round t. Each client trains its model and sends the model updates
as well as activations of dense layers to the server. The server aggregates these
updates and activations. In weighted aggregation, sc and St represent the number
of training samples of client c and the number of training samples in round t,
respectively. Based on average activations, and ℓ1-norm of the CNN filters, the
server picks the optimal sub-model for slow clients after every r rounds. The
only two parameters of Hasaas are k (MDR), representing the percentage of
neurons/filters to be dropped from the dense and convolution layers and the
Mask Update Round (MUR) r, at which M is updated.

Aggregation. Hasaas uses insights from CLT to aggregate clients’ model
parameters. Server calculates the weighted mean µ (weighted by number of data
samples) and standard deviation σ of each parameter across clients. It then uses
µ and σ to randomly sample parameters from the Normal distribution to send
back to the clients. As training progresses and the model becomes stable, large
changes in model parameters can adversely impact performance. As a result, we
continue decreasing σ proportional to 1/

√
t (current round), which limits model

deviations from the stable parameters and helps with generalization.

5 Evaluation

We now present empirical results for Hasaas using large-scale simulations and
small-scale testbed experiments under federated settings. We demonstrate the
effectiveness of Hasaas in the presence of both system and statistical heterogene-
ity and study its convergence, robustness, and fairness properties. All code and
scripts for generating the paper results are available here.

A. Experimental Details. We evaluate Hasaas on multiple models, tasks, and
real-world federated datasets. We implement Hasaas in LEAF [9] – a benchmark-
ing framework for FL to simulate our federated setup – and evaluate its perfor-
mance on CNN and LSTM models, and five real-world datasets. Specifically, we
use CIFAR-10, Federated extended MNIST (FEMNIST), FEMNIST (skewed),
Fashion-MNIST (FMNIST) for CNN and Sent140 for the LSTM model. We
compare Hasaas performance with FedAvg [26], FedProx [33], and Single-Model
Adaptive Federated Dropout [6].

Real Data. The datasets we use are curated from prior work in FL [33,22,8]
and recent FL benchmarks in LEAF [9]. FMNIST, FEMNIST, and Sent140 are
non-IID datasets. To study Hasaas under an IID dataset, we curated CIFAR-10
in an IID fashion, where each example has the same probability to belong to any
device. We then study a more complex 62-class FEMNIST dataset [11,8]. Details
of datasets, models, and workloads are provided in Appendix A.2 on GitHub.

https://github.com/FederatedResearch/hasaas
https://github.com/FederatedResearch/hasaas


Learning Fast and Slow: Towards Inclusive Federated Learning 11

Fig. 3: Test accuracy as a function of round number for 0% and 30% system hetero-
geneity. 0% client drop rate indicates no system heterogeneity. If there is no system
heterogeneity, Hasaas provides better or similar performance to FedAvg and FedProx.

Fig. 4: Test accuracy as a function of round number for 50%, 70% and 90% system
heterogeneity, where system heterogeneity referes to the percentage of slow clients.
Hasaas results in significant convergence improvements relative to other schemes. As
statistical heterogeneity increases Hasaas provides robust performance. We also report
train loss in Appendix A.5.

Hyperparameters. We evaluate each dataset using three learning rates:
{0.01, 0.001, 0.0003}. While smaller learning rates mean the model takes longer
to converge, the behavior of all techniques remains the same relative to each
other. As suggested in an earlier work [33], we use a learning rate of 0.001 and
0.01 for the CNN and LSTM models, respectively. We set the number of selected
devices per round to 10. Unless specified otherwise, we set MDR = 50% and
r = 10, which results in 50% of the filters and neurons being dropped from the
convolution and dense layers, and leads to 50% fewer cells in the LSTM layers
for the slow client. For a fair comparison, we fix the randomly selected devices,
the slow clients, and mini-batch orders across all runs and report the average
results of 5 runs.

B. System & Statistical Heterogeneity.

System heterogeneity. For studying the impact of heterogeneity, we vary
the percentage of slow devices (0%, 30%, 50%, 70%, and 90%). We emulate de-
vices as slow if they cannot train the model for E epochs due to their system
constraints. Settings where 0% devices are slow correspond to environments with-
out system heterogeneity, whereas 90% of the slow devices correspond to highly
heterogeneous environments. FedAvg simply drops slow clients upon reaching



12 M. Munir et al.

the global clock cycle but Hasaas incorporates the updates from these devices as
they train a subset model and are able to send updates on time. AFD also incor-
porates slow-device updates as it trains a smaller model on all devices. FedProx
incorporates partial updates from the slow devices.

Figures 3 and 4 show that Hasaas achieves robust performance for different
levels of system heterogeneity compared to FedAvg, FedProx and AFD. As sys-
tem heterogeneity increases, FedAvg’s performance degrades significantly. Fed-
Prox performs better than FedAvg because it incorporates partial updates from
slow clients and modifies the objective function to include a regularization term
to avoid over-fitting on clients’ data. However, incorporating partial updates
can have a negative impact if the model is not trained for enough epochs. Thus,
as the number of slow clients increases, FedProx achieves lower test accuracy
relative to Hasaas especially with non-IID datasets (e.g., FEMNIST).

Statistical heterogeneity. We use datasets with varying degrees of IID-
ness to evaluate Hasaas under statistical heterogeneity. We use two versions
of FEMNIST dataset; one non-IID version is generated using LEAF, which is
employed by Ditto [22]. We generate a skewed non-IID version of the FEMNIST
dataset in which each client contains data with only 5 classes of the FEMNIST
dataset. This approach has been used in prior works to generate skewed non-IID
datasets. Figures 3 and 4 show the test accuracy of all approaches on different
datasets. These results indicate that as the degree of non-IID-ness increases,
Hasaas provides better generalizability as evidenced by the high test accuracy.
For each dataset, Hasaas provides either faster convergence compared to other
schemes while also achieving better or comparable test accuracy.

In case of the IID CIFAR dataset, Hasaas achieves fast convergence to a
test accuracy of 50% than FedProx but results in 2% lower test accuracy after
1000 rounds. This occurs because in the presence of system heterogeneity, while
Hasaas serves a sub-model to slow clients FedProx continues to serve the same
large model to all clients. The IID nature of the data leads to a lower variance in
the sample mean of the model parameters, resulting in less benefits of the CLT
approach. In case of SENT140, Hasaas performs comparable to other approaches,
except FedAvg, which experiences large fluctuations as system heterogeneity
increases. In case of high system (90%) and statistical heterogeneity (FEMNIST
skewed), Hasaas provides 27% test accuracy improvement over FedAvg, 14% over
FedProx, and 34% over AFD; see Figure 4.

Fairness. Due to statistical heterogeneity in federated settings, the perfor-
mance of a model may vary significantly across different devices, resulting in
representation disparity [17]. In Hasaas, we serve a subset model to slow clients,
which potentially has a larger risk of representation disparity. We empirically
show that in addition to improving accuracy, Hasaas also offers improved fair-
ness. Hasaas picks the best subset model after every r (a tunable parameter)
rounds for slow clients. Variance of test loss across clients can be seen in Figure
5 and Appendix A.5. Interestingly, Hasaas provides better average test accu-
racy as well as achieves lower variance across clients compared to FedAvg and
Hasaas without CLT. Figure 5 compares the robustness and fairness of Hasaas,



Learning Fast and Slow: Towards Inclusive Federated Learning 13

Fig. 5: Variance of test loss as a function of average test accuracy.

FedProx, AFD and FedAvg. Results show that Hasaas provides robust and fair
performance as it trains on all clients and uses CLT for improved generalization.

C. Ablation Study.16

Benefits of activation-based model pruning . We compared our activation-
based sub-model selection strategy with the random sub-model selection strat-
egy, which selects a new model in each round. We find that our activation-based
approach consistently outperforms random selection, yielding a test accuracy im-
provement ranging from 3.7% to 6.9% for CDRs of 30% and 90%, respectively.

Benefits of model generalization module . We also evaluated Hasaas’
model generalization module in our ablation study. We find that incorporating
the generalization module provided up to 6.7% improvement in test accuracy,
compared to the model without the module.

Choice of normalizing σ by 1/
√
t. We conducted an empirical evaluation

of various normalizing factors for σ in order to identify the optimal approach for
improving the performance of a model using random sampling from a normal
distribution. Our findings indicate that using a large normalizing factor results in
a reduction in the improvement provided by this sampling technique, as the value
of σ becomes smaller and the sampled weights tend to remain close to the mean.
This effectively reduces the effectiveness of the technique to that of FedAvg. On
the other hand, failing to normalize σ leads to large model parameters, which
can cause the model to become unstable, which is illustrated in Appendix. Based
on our empirical evaluation, we suggest using a normalizing factor that keeps σ
moderate and increases as the round progresses and the model weights become
more stable, leading to better accuracy. In our experiments, we found that 1/

√
t

was a particularly effective normalizing factor for σ.
Using CLT with FedProx & FedAvg . We performed experiments by ap-

plying the model generalization module of Hasaas to FedAvg and FedProx on the
FEMNIST skewed data. We observe that the differences between these schemes
(i.e., FedAvg and FedProx) with and without CLT are small and not significant.
With vanilla FedAvg, CLT does not provide any significant improvement be-

16 Due to space limitations, figures related to ablation experiments are available in the
Appendix A.1 on our GitHub.

https://github.com/FederatedResearch/hasaas


14 M. Munir et al.

cause slow clients are dropped in FedAvg. The same trend holds with FedProx,
which also does not serve small models to slow clients but instead incorporates
partial work and adds a regularization term to the loss function.

D. Real Testbed Experiments. We implement Hasaas on a real FL testbed.
We use PySyft [31], an open-source framework for FL, to train models on mo-
bile devices. Mobile devices connect with the server to download models and
train them using KotlinSyft [30]. The server communicates with the clients us-
ing Google Firebase Services [16]. We perform evaluations on real smartphones,
i.e., Nexus 6P (3GB RAM, Octacore) and Nokia 1 (1GB RAM, Quadcore) as
fast and slow client, respectively. We employed real datasets, namely FEMNIST
and a CNN model from the LEAF benchmark, to investigate the impact of model
size on model training times. Further details of the model can be found in the
Appendix A.2. We present the training time for various model drop rates on the
slow device in Hasaas in Appendix A.3. The large model is the unpruned model
served to the slow client and a 30% MDR implies a 30% pruned model. Our re-
sults indicate that increasing the MDR decreases the training time. Specifically,
a 50% MDR leads to a 66.7% reduction in training time due to reduced FLOPs,
as shown in Appendix A.3. A MDR of 50% results in 3.8× fewer FLOPs and
a training time reduction of roughly 2.9×. We examine the impact of network
heterogeneity on convergence time for different MDRs in Appendix A.4.

6 Limitations and Future Work

Differential model serving. We only evaluated Hasaas using a 2-model ap-
proach (i.e., fast clients train over the global model whereas slow clients train
over a sub-model). In the future, it would be useful to examine the effectiveness
of customizing model sizes for each client based on their characteristics.

Impact on mobile user experience. By including slow clients in the FL
training process, it is possible that these clients may be further slowed down
thereby degrading mobile users’ experience of other applications (e.g., mobile
browsers). This could be explored in future works.

Hasaas and multi-task learning. In multi-task learning [34], the goal is to
train personalized models for each device independent of sizes whereas Hasaas
focuses on reducing the overhead of model training for improving inclusiveness
in the presence of client heterogeneity.

7 Conclusion

We presented the design and evaluation of Hasaas, an inclusive framework for
federated learning that achieves improved learning and fairness properties in the
presence of client heterogeneity. Hasaas’s differential model serving ensures that
slow clients are not dropped from the training process and achieve training times
similar to fast clients whenever possible. Our evaluation involving large-scale
simulations and a small-scale real testbed of mobile clients shows that Hasaas
achieves robust performance across a variety of real-world federated datasets.



Learning Fast and Slow: Towards Inclusive Federated Learning 15

References

1. Build for Android (Go edition): optimize your app for global markets (Google I/O
’18), https://bit.ly/2UKLQDl

2. Abdullah, M., Qazi, Z.A., Qazi, I.A.: Causal impact of android go on mobile web
performance. In: Proceedings of the 22nd ACM Internet Measurement Conference.
p. 113–129. IMC ’22, Association for Computing Machinery, New York, NY, USA
(2022), https://doi.org/10.1145/3517745.3561456

3. Ahmad, S., Haamid, A.L., Qazi, Z.A., Zhou, Z., Benson, T., Qazi, I.A.: A view
from the other side: Understanding mobile phone characteristics in the developing
world. In: Proceedings of the 2016 Internet Measurement Conference. p. 319–325.
IMC ’16 (2016), https://doi.org/10.1145/2987443.2987470

4. Bonawitz, K., Kairouz, P., McMahan, B., Ramage, D.: Federated learning and
privacy: Building privacy-preserving systems for machine learning and data science
on decentralized data. Queue 19(5), 87–114 (nov 2021), https://doi.org/10.

1145/3494834.3500240

5. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konecny, J., Mazzocchi, S., McMahan, H.B., Van Overveldt, T.,
Petrou, D., Ramage, D., Roselander, J.: Towards federated learning at scale: Sys-
tem design (2019), http://arxiv.org/abs/1902.01046, cite arxiv:1902.01046

6. Bouacida, N., Hou, J., Zang, H., Liu, X.: Adaptive federated dropout:
Improving communication efficiency and generalization for federated
learning. In: IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). pp. 1–6 (2021).
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484526

7. BUKATY, P.: The California Consumer Privacy Act (CCPA): An implementa-
tion guide. IT Governance Publishing (2019), http://www.jstor.org/stable/j.
ctvjghvnn

8. Caldas, S., Konečný, J., McMahan, H.B., Talwalkar, A.: Expanding the
reach of federated learning by reducing client resource requirements. CoRR
abs/1812.07210 (2018), http://arxiv.org/abs/1812.07210

9. Caldas, S., Wu, P., Li, T., Konečný, J., McMahan, H.B., Smith, V., Talwalkar,
A.: LEAF: A benchmark for federated settings. CoRR abs/1812.01097 (2018),
http://arxiv.org/abs/1812.01097

10. Chou, L., Liu, Z., Wang, Z., Shrivastav, A.: Efficient and less central-
ized federated learning. In: Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD) (2021), https://2021.ecmlpkdd.org/wp-content/

uploads/2021/07/sub_932.pdf

11. Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST
to handwritten letters. CoRR abs/1702.05373 (2017), http://arxiv.org/abs/
1702.05373

12. Diao, E., Ding, J., Tarokh, V.: Heterofl: Computation and communication effi-
cient federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264
(2020)

13. Duan, J.H., Li, W., Lu, S.: Feddna: Federated learning with decoupled
normalization-layer aggregation for non-iid data. In: Proceedings of the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML/PKDD) (2021), https://2021.ecmlpkdd.
org/wp-content/uploads/2021/07/sub_539.pdf

https://doi.org/10.1145/3517745.3561456
https://doi.org/10.1145/2987443.2987470
https://doi.org/10.1145/3494834.3500240
https://doi.org/10.1145/3494834.3500240
http://arxiv.org/abs/1902.01046
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484526
http://www.jstor.org/stable/j.ctvjghvnn
http://www.jstor.org/stable/j.ctvjghvnn
http://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1812.01097
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_932.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_932.pdf
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_539.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_539.pdf


16 M. Munir et al.

14. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. pp.
265–284. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

15. Feller, W.: An Introduction to Probability Theory and Its Applications,
vol. 1. Wiley (January 1968), http://www.amazon.ca/exec/obidos/redirect?

tag=citeulike04-20{&}path=ASIN/0471257087

16. Google: Firebase services. https://firebase.google.com
17. Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P.: Fairness without de-

mographics in repeated loss minimization (2018)
18. Hu, Z., Shaloudegi, K., Zhang, G., Yu, Y.: Fedmgda+: Federated learning meets

multi-objective optimization. CoRR abs/2006.11489 (2020), https://arxiv.

org/abs/2006.11489

19. Jiang, Y., Wang, S., Valls, V., Ko, B.J., Lee, W.H., Leung, K.K., Tassiu-
las, L.: Model pruning enables efficient federated learning on edge devices.
IEEE Transactions on Neural Networks and Learning Systems pp. 1–13 (2022).
https://doi.org/10.1109/TNNLS.2022.3166101

20. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., et al.: Advances and open
problems in federated learning. CoRR abs/1912.04977 (2019), http://arxiv.
org/abs/1912.04977

21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–
444 (2015). https://doi.org/10.1038/nature14539, https://doi.org/10.1038/

nature14539

22. Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: Fair and robust federated learn-
ing through personalization. CoRR abs/2012.04221 (2020), https://arxiv.org/
abs/2012.04221

23. Li, T., Sanjabi, M., Smith, V.: Fair resource allocation in federated learning. CoRR
abs/1905.10497 (2019), http://arxiv.org/abs/1905.10497

24. Li, X.C., Zhan, D.C., Shao, Y., Li, B., Song, S.: Fedphp: Federated personal-
ization with inherited private models. In: Proceedings of the European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML/PKDD) (2021), https://2021.ecmlpkdd.org/wp-content/
uploads/2021/07/sub_654.pdf

25. Ma, Z., L, Y., Li, W., Cui, S.: Beyond random selection: A perspective from model
inversion in personalized federated learning. In: Proceedings of the European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML/PKDD) (2022), https://2022.ecmlpkdd.org/wp-content/
uploads/2022/09/sub_810.pdf

26. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.:
Communication-Efficient Learning of Deep Networks from Decentralized Data. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54,
pp. 1273–1282. PMLR (20–22 Apr 2017), https://proceedings.mlr.press/v54/
mcmahan17a.html

27. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: Chaudhuri,
K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 4615–
4625. PMLR (09–15 Jun 2019), https://proceedings.mlr.press/v97/mohri19a.
html

28. Naseer, U., Benson, T.A., Netravali, R.: Webmedic: Disentangling the memory-
functionality tension for the next billion mobile web users. In: Proceedings of

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/0471257087
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20{&}path=ASIN/0471257087
https://firebase.google.com
https://arxiv.org/abs/2006.11489
https://arxiv.org/abs/2006.11489
https://doi.org/10.1109/TNNLS.2022.3166101
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/2012.04221
https://arxiv.org/abs/2012.04221
http://arxiv.org/abs/1905.10497
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_654.pdf
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_654.pdf
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_810.pdf
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_810.pdf
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v97/mohri19a.html
https://proceedings.mlr.press/v97/mohri19a.html


Learning Fast and Slow: Towards Inclusive Federated Learning 17

the 22nd International Workshop on Mobile Computing Systems and Applica-
tions. p. 71–77. HotMobile ’21, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3446382.3448652, https://doi.org/

10.1145/3446382.3448652

29. Naseer, U., Benson, T.A., Netravali, R.: Webmedic: Disentangling the memory-
functionality tension for the next billion mobile web users. In: Proceedings of
the 22nd International Workshop on Mobile Computing Systems and Applica-
tions. p. 71–77. HotMobile ’21, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3446382.3448652, https://doi.org/

10.1145/3446382.3448652

30. OpenMined: Kotlinsyft. https://github.com/OpenMined/KotlinSyft/
31. OpenMined: Pysyft. https://github.com/OpenMined/PySyft/
32. Qazi, I.A., Qazi, Z.A., Benson, T.A., Murtaza, G., Latif, E., Manan, A., Tariq,

A.: Mobile web browsing under memory pressure. SIGCOMM Comput. Commun.
Rev. 50(4), 35–48 (Oct 2020). https://doi.org/10.1145/3431832.3431837, https:
//doi.org/10.1145/3431832.3431837

33. Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.S., Smith, V.: Federated
optimization in heterogeneous networks. arXiv: Learning (2020)

34. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.: Federated multi-task learn-
ing. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. p. 4427–4437. NIPS’17, Curran Associates Inc., Red Hook,
NY, USA (2017)

35. Tan, C.M.J., Motani, M.: DropNet: Reducing neural network complexity via it-
erative pruning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th Interna-
tional Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 119, pp. 9356–9366. PMLR (13–18 Jul 2020), https://proceedings.
mlr.press/v119/tan20a.html

36. Voigt, P., Bussche, A.v.d.: The EU General Data Protection Regulation (GDPR):
A Practical Guide. Springer Publishing Company, Incorporated, 1st edn. (2017)

37. Waheed, T., Akhtar, Z., Qazi, I.A., Qazi, Z.A.: Coal not diamonds: How memory
pressure falters mobile video qoe. In: ACM CoNEXT (2022)

38. Wang, J., Charles, Z., Xu, Z., Joshi, G., et al.: A field guide to federated optimiza-
tion. CoRR abs/2107.06917 (2021), https://arxiv.org/abs/2107.06917

39. Xu, C., Qu, Y., Xiang, Y., Gao, L.: Asynchronous federated learning on heteroge-
neous devices: A survey (2021)

https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://github.com/OpenMined/KotlinSyft/
https://github.com/OpenMined/PySyft/
https://doi.org/10.1145/3431832.3431837
https://doi.org/10.1145/3431832.3431837
https://doi.org/10.1145/3431832.3431837
https://proceedings.mlr.press/v119/tan20a.html
https://proceedings.mlr.press/v119/tan20a.html
https://arxiv.org/abs/2107.06917

	Learning Fast and Slow: Towards Inclusive Federated Learning

