Learning Fast and Slow: Towards Inclusive
Federated Learning

Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar
Ayyub Qazi, Thsan Ayyub Qazi, and Agha Ali Raza

Department of Computer Science, Lahore University of Management Sciences
{18030016 ,18030047,21100119,zafar.qazi,ihsan.qazi,agha.ali .raza}@lums .edu.pk

Abstract. Today’s deep learning systems rely on large amounts of use-
ful data to make accurate predictions. Often such data is private and thus
not readily available due to rising privacy concerns. Federated learning
(FL) tackles this problem by training a shared model locally on devices
to aid learning in a privacy-preserving manner. Unfortunately, FL’s ef-
fectiveness degrades when model training involves clients with heteroge-
neous devices; a common case especially in developing countries. Slow
clients are dropped in FL, which not only limits learning but also sys-
tematically excludes slow clients thereby potentially biasing results. We
propose Hasaas; a system that tackles this challenge by adapting the
model size for slow clients based on their hardware resources. By doing
so, Hasaas obviates the need to drop slow clients, which improves model
accuracy and fairness. To improve robustness in the presence of statistical
heterogeneity, Hasaas uses insights from the Central Limit Theorem to
estimate model parameters in every round. Experimental evaluation in-
volving large-scale simulations and a small-scale real testbed shows that
Hasaas provides robust performance in terms of test accuracy, fairness,
and convergence times compared to state-of-the-art schemes.

Keywords: Federated Learning, Fairness, Robustness, Developing Countries

1 Introduction

Today’s deep neural networks (DNNs) power a wide variety of applications rang-
ing from image classification, speech recognition, to fraud detection [21]. DNNs
rely on large amounts of data to make accurate predictions and draw useful in-
ferences. However, such data is often private’ and may not be readily available
for centralized collection due to rising privacy concerns and growing adoption
of data privacy regulations (e.g., Europe’s GDPR [36] and California Consumer
Privacy Act [7]). A lack of useful data can limit the effectiveness of DNNs [4].
Federated learning (FL) is a distributed machine learning approach that tack-
les this problem by training a shared model over data that is distributed across

! Private data includes any personal, personally identifiable, financial or sensitive user
information [14].

2 M. Munir et al.

multiple edge devices (e.g., mobile phones), which share model parameters with
a centralized server to aid learning in a privacy-preserving manner [26,38]. Unfor-
tunately, FL’s effectiveness degrades when model training involves heterogeneous
client devices [20,5]; a common case especially in developing countries [3,32,2,37].
With FL, slow clients are dropped from the training process to reduce conver-
gence delays. However, such an approach can degrade test accuracy and reduce
fairness due to the systematic exclusion of slow clients [20,27].

We propose Hasaas;? a system that tackles this challenge by (i) adapting
the model size based on client device capabilities (which we call Differential
Model Serving or DMS), (ii) using a sub-model selection strategy based on post-
activation values, and (iii) using insights from the Central Limit Theorem (CLT)
to improve model robustness in the presence of statistical heterogeneity [15].

Serving small models to slow clients and large models to fast clients offers
two key benefits. First, it reduces the model training time for slow clients, which
decreases their chances of being dropped from the training process thereby im-
proving fairness. Second, it can achieve a better tradeoff between model perfor-
mance and convergence times compared to serving a single model to all clients.?
However, realizing these benefits requires answering two key questions: Given a
model, how should we select a sub-model to serve to slow clients? and how should
we aggregate model parameters from slow and fast clients?

Hasaas selects a sub-model based on post-activation values of neurons. In
particular, it bootstraps the FL process by choosing a random sub-model and
allows slow clients to train the sub-model for the first r rounds. Then after every
r rounds, it chooses a new sub-model based on post-activation values.* This
allows neurons with small activation values to be excluded from the sub-model,
which improves performance. The neurons that have small activation values are
considered less important as they contribute less to the model’s output and have
a smaller impact on weight updates during training.

With FL, a random set of clients are picked in each round for model training,
which changes the proportion of slow and fast clients in each round. This can
reduce model accuracy, especially when there is statistical heterogeneity in data
across clients. To improve robustness in such scenarios, Hasaas aggregates model
parameters in each round using insights from the CLT by learning the distribu-
tion of the sample mean of the model parameters [15].> Hasaas then randomly
draws each model parameter from the learned distribution rather than always
using the sample mean. This improves performance especially when there is high
variance in the model parameters shared by each client.

We carry out extensive evaluation using (i) large-scale simulations involving
the LEAF benchmarking framework for learning in FL settings [9] and (ii) small-
scale real testbed experiments involving mobile clients with heterogeneous device

2 In the Urdu language, Hasaas means sensitive.

3 Small models can reduce accuracy, whereas large models lead to slow convergence.

4 In case of CNN models, it prunes filters too.

5 Thus, in every training round, we estimate the mean and variance of each model
parameter, which together uniquely identifies a Normal distribution.

Learning Fast and Slow: Towards Inclusive Federated Learning 3

capabilities. We compare Hasaas’s performance with several notable schemes

including FedAvg [26], Adaptive Dropout [6], and FedProx [33] and carry out

a detailed ablation study to quantify the benefits of each component of Hasaas.

Experiments show that Hasaas achieves robust performance in terms of test

accuracy, convergence, and fairness across diverse datasets and models.

Taken together, we make the following contributions in this work.

— We design Hasaas; an adaptive model serving framework for FL that adapts
model sizes based on client capabilities (§4). It reduces the computational and
communication costs in FL by training on a subset of the model’s weights and
exchanging smaller sub-models between slow clients and the server instead of
the full model updates.

— To achieve better generalization, we propose a CLT-based approach, which
outperforms other approaches including FedAvg, Adaptive Dropout, and Fed-
Prox (§4).

— We carry out extensive evaluation using large-scale simulations and small-
scale testbed experiments involving real smartphones over a wide variety of
real-world federated datasets (§5). We make our code available on GitHub.%
for the benefit of the community.

2 Background and Related Work

Our work focuses on synchronous FL algorithms that proceed in training rounds.
These algorithms aim to learn a shared global model with parameters embodied
in a real tensor I' from data stored across several distributed clients. In each
round t 0, the server distributes the current global model I't to the set of
selected clients St with a total of n¢ data instances. The selected clients locally
execute stochastic gradient descent (SGD) on their data and independently train
the model to produce the updated models fFIt(jk 2 Stg. The update of each client
k can be expressed as:

r'‘“=ry H 8k2Ss; (1)

where Htk is the gradients tensor for client K in training round t, and is the
learning rate chosen by the server. Each selected client K then sends the up-
date back to the server, where the new global model (I'ty1) is constructed by
aggregating all client-side updates as follows:

X n
Kk k
I = o Tt (2)
8k2s, T
where Nk is the number of data instances of client ¢ and ny = gk2s, Nk- Hence,
I'ty1 can be written as:
'y, =1 tHt (3)

1 Kk
where Hy = fe k2S: niHE.

5 https://github.com/FederatedResearch/hasaas

https://github.com/FederatedResearch/hasaas

4 M. Munir et al.

Fairness in FL. Due to the heterogeneity in client devices and data in fed-
erated networks, it is possible that the performance of a model will vary signifi-
cantly across the network. This concern, also known as representation disparity,
is a major challenge in FL, as it can potentially result in uneven outcomes for
the devices. Following Li et al. [22], we provide a formal definition of this fairness
in the context of FL below.

Definition. We say that a model W1 is more fair than Wy if the test perfor-
mance distribution of W1 across the network is more uniform than that of Ws,
i.e., StAFF(W1)0kok) < StdfF(W2)gkoik] where Fi() denotes the test loss on
device k 2 [K], and stdf g denotes the standard deviation.

We note that there exists a tension between variance and utility in the def-
inition above; in general, the goal is to lower the variance while maintaining
a reasonable average performance (e.g., average test accuracy). Several prior
works have separately considered either fairness or robustness in FL. For in-
stance, fairness strategies include using minimax optimization to focus on the
worst-performing devices [18,39] or reweighting the devices to allow for a flexible
fairness/accuracy tradeoff (e.g., [23]).

2.1 Related Work

Several recent and ongoing efforts aim to tackle system and statistical hetero-
geneity in FL [6,8,13,10,24,33,20,19,39,26]. In this section, we discuss works that
are most closely related to our study.

System heterogeneity. A number of schemes aim to reduce the impact of
client heterogeneity by serving smaller models. These schemes differ based on
(i) whether they do model pruning on the client-side [19] or the server-side [6],
(ii) the criteria used for pruning (e.g., [12,8]), and (iii) whether they serve a
single model to all clients or not [19,8,6]. For example, PruneFL [19] performs
initial model pruning at a selected client and further adaptive pruning on the
server-side. It serves the same pruned model to all clients. Moreover, because
the initial model pruning is carried out on only one selected client and its data,
the pruned model can be biased towards the selected client. HeteroFL [12] trains
local models based on clients’ device characteristics. It pre-defines subset models
with different complexity levels and assigns the same model to clients belonging
to the same complexity level. However, the subset models are statically defined,
which limits model performance. AFD [6] trains a subset model using either a
single-model or multi-model serving approach. With the former approach, the
same model is served to each client and monitored for average training loss.
A positive score is given for decreasing loss, while a new model is served if
loss increases. While AFD outperforms Federated Dropout (FD), which relies
on random dropping to select sub-models, such a strategy can trigger frequent
model changes, which can negatively affect model performance. We demonstrate
this in Section 5.7

" With multi-model AFD, a different subset model is used by each client, all of the
same size. However, training with a small fraction of clients in each round — a typical
scenario in FL — makes the algorithm behave randomly, just like the FD scheme [6].

Learning Fast and Slow: Towards Inclusive Federated Learning 5

Statistical heterogeneity A number of approaches aim to tackle statistical
heterogeneity by either modifying the (i) client selection strategy of FL (e.g.,
[25]), (i) FedAvg aggregation method (e.g., [13]) or (iii) objective function to
include a regularization term (e.g., [33]). For example, PFedR [25] is a client
selection strategy in which the server generates dummy datasets from the inver-
sion of local model updates, identi es clients with large distribution divergences,
and aggregates updates from highly relevant clients only. Generating dummy
data from client updates raises privacy concerns. Also, in case of secure multi-
party aggregation where client updates are meaningless without aggregation,
generating dummy data from those updates will not help in identifying client
distribution divergences. In such cases, this approach may not yield the desired
results. FedDNA [13] is a parameter aggregation method for FL that aggregates
gradient and statistical parameters, separately. While the gradient parameters
are aggregated using FedAvg, the statistical parameters are aggregated collabo-
ratively to reduce the divergence between the local models and the central model.
This technique is only applicable to models with a batch normalization layer.

FedProx [33] uses partial work from resource-constrained devices to tackle
system heterogeneity and adds a regularization term in the FedAvg objective
function to improve performance under statistical heterogeneity. However, in-
corporating partial updates from slow clients can reduce test accuracy if the
model is not trained enough® In addition, downloading a large model from the
server can still be a signi cant burden for slow clients, particularly those located
in regions with limited connectivity.

Hasaastackles both system and statistical heterogeneity by combining the
bene ts of di erential model serving and CLT-based aggregation. It extends the
state-of-the-art in terms of system heterogeneity by employing an approach in
which slow clients are served a small model whereas the fast clients continue to
receive the global model. This is unlike AFD and PruneFL that serve smaller
models toall clients, which can degrade model accuracy. Moreover, unlike Het-
eroFL that uses pre-de ned subset modelsHasaasdynamically updates small
models based on average post-activation values in the global model. As a result,
sub-models that are not performant are discarded as training progresses. We
delve deeper into the design ofHasaasin the following section.

3 Problem Motivation

It is common for distributed clients in FL to exhibit considerable heterogeneity
in terms of computational resources (e.g., number of CPU cores, RAM size) and
network bandwidth [8,33]. This heterogeneity impacts both the model accuracy
and the training time of the FL process [9]. Consequently, resource-constrained
edge devices (e.g., entry-level smartphones), which are prevalent in developing
countries, are either unable to train models due to their limited compute and

8 Moreover, if the slow clients are unable to run the large model due to resource
constraints, they cannot participate in the training process.

6 M. Munir et al.

Fig. 1: Impact of systems heterogeneity on test accuracy and fairness in FedAvg for
di erent client drop rates and datasets. As the fraction of slow clients increases, the
test accuracy, and fairness decrease.

memory resources or take a prohibitively long time in training [26,32,28]. Ac-
cording to a study involving one of the largest online social networks, 57% of
smartphones in developing regions, had 1 GB or less RAM [29]Such entry-level
smartphones frequently operate under low memory regimes, which is known to
degrade performance [32,37,2]. Unfortunately, slow clients (or stragglers) are
dropped in FL schemes (e.g., FedAvg) for e ciency reasons because waiting for
slow clients to report their updates can increase convergence times. However,
dropping slow clients can (i) degrade test accuracy and (ii) lead to unfairness.

System heterogeneity degrades robustness and fairness. To evaluate the
impact of slow clients in FedAvg on model accuracy and fairness, we simulate
di erent levels of system heterogeneity using LEAF [9]. In particular, we vary
the client drop rate (CDR)1° from 10% to 90% and carry out evaluation on
multiple real datasets including FEMNIST, FMNIST, CIFAR-10, and Sent140.
Figure 1 shows that with FedAvg, system heterogeneity negatively impacts both
model robustness as well as fairness. In particular, test accuracy decreases as
CDR increases acrossll datasets whereas the variance of the test loss (across
clients), which captures model fairness, generally increases with CDR.

Homogeneous model serving (HMS) either slows convergence or de-

grades model performance. To quantify the impact of serving the same model
to all clients we train a CNN model over the FEMNIST dataset [9] and mea-
sure the test accuracy and the time to complete 100 training rounds on two real
smartphones, i.e., Nokia 1 (Quadcore, 1 GB RAM) and Nexus 6P (Octacore,
3GB RAM). These devices represent slow and fast clients, respectivelf We
nd that with FedAvg, serving the same model to both slow and fast clients
leads to slow convergence. In our testbed, it took 15.9 hours with FedAvg to
complete 100 train rounds. To address this system heterogeneity, one can serve

° In 2018, 300 million Android phones shipped globally had 1 GB or less RAM [1].

10 CDR is the fraction of slow clients in the system. With FedAvg, such clients are
dropped from the training process.

1 Similar to Li et al. [22], we capture model fairness using the variance of test loss
across clients. Thus, the more uniform the loss distribution is, the fairer the model.

12 The memory speci cations of these devices represent a wide range of smartphones.
In developing regions, phones with 1 GB or less RAM had a market share of 57%
compared to 20% in developed regions. Phones 3 GB RAM had less than 25%
market share in developing regions and over 50% share in developed countries [29].

Learning Fast and Slow: Towards Inclusive Federated Learning 7

Fig. 2: Time to complete 100 rounds of training on a real testbed as a function of test
accuracy for di erent model drop rates (MDR).

a smaller model (e.g., a subset of the original model) to all clients [8]. Figure
2 shows that indeed serving smaller models reduces the time to complete 100
rounds. However, it also reduces test accuracy. For example, increasing the model
drop rate (MDR) (i.e., the pruning percentage) from 30% to 50% reduces the
test accuracy by 4.2%. Another approach is to serve a smaller model to only slow
clients while the faster clients continue to train on the large model (we refer to
this approach asDi erential Model Serving , which is part of Hasaay We nd
that such an approach considerably improves test accuracy while also achieving
signi cant reductions in convergence time. For example, when the MDR is 50%,
DMS improves test accuracy by 9.4% over HMS with similar convergence times.
However, we see diminishing returns beyond 50% MDR because in this regime
the fast client becomes the bottleneck as opposed to the slow client.

In summary, serving a single model to all clients presents a tradeo between
convergence time and model accuracy. DMS can address this tradeo by serving
models of di erent sizes to slow and fast clients.

4 Design

Hasaastackles both system heterogeneity and the statistical challenges with
heterogeneous data using the following design features:

1. Dierential model serving. Clients are served models with dierent sizes
based on their capabilities.

2. Sub-model selection using activationsSmall sub-models are selected for slow
clients based on post-activation values.

3. Model generalization using insights from the Central Limit Theorem To im-
prove performance robustness, especially over non-lID datasets, we use a
CLT-based approach to choose model parameters.

A. Di erential Model Serving . DMS has several bene ts compared to serving
the same model to all clients participating in FL. First, due to the large hetero-
geneity in mobile device characteristics, training a single model over all clients

8 M. Munir et al.

can lead to widely di erent training times, which can result in frequent dropping

of slow clients from FL,*® potentially leading to unfairness across clients [8,5,22].
Second, it is di cult to choose a single model that allows all clients to partic-
ipate in FL training while achieving high accuracy; small models can degrade
model accuracy, whereas large models lead to the dropping of slow clients. DMS
addresses these challenges by allowing model sizes todxapted based on device
characteristics such as the number of CPU cores, memory size, and GPU char-
acteristics (if present). Thus, slow clients are served smaller models than faster
clients, which can improve fairness by reducing the dropping of clients from the
FL process.

B. Sub-model Selection . Given a model size, a key design question iklasaas
is, \which sub-model should we serve to slow clientsThere are many possible
sub-models one can pick. In a feed-forward neural network, suppose we allow
dropping of neurons from all layers including the input and output layers, then
the number of distinct sub-models are lower bounded by "* L b e i b o

wheren; is the number of neurons in layeri, (1 f) is the pruning fraction (i.e.,
fraction of neurons dropped from each layer), and is the total number of layers.
Finding the best sub-model from among such a large set of possible sub-models is
challenging. We address this challenge with two strategies. First, we bootstrap
the FL process by choosing a random sub-model and allowing slow clients to
train over the sub-model for the rst r rounds. This allows us to assess the parts
of the sub-model that contribute the most to the learning task. Second, after
every r rounds, we choose a new sub-model based on the post-activation values
of neurons (in case of CNN models, lters too) [35]. This allows neurons with
small activation values to be excluded from the sub-model. This approach can
enable better model selection than randomly picking models in each round or
choosing a di erent random model in each round [8].

C. Model Generalization . Training a model in FL is challenging due to the
statistical variations in data distributed across clients, which impacts both model
accuracy as well as model convergence [8,33]. This is exacerbated by the fact that
in each round, FL picks k random clients for training from a pool of N clients. As
a result, choosing the sample mean of the weights of each model parameter across
clients in the current round may not be representative of clients picked in the
next round, especially whenk is much smaller than N, which is a typical case in
FL [26].1* To generalize model training, we use insights from CLT, which posits
that the distribution of the sample mean of IID random variables converges
to a Normal distribution. > We consider the setting, where each clieni draws
independent samples from a distributionD with nite mean and nite variance

2, Let X{ D be the random variable denoting weight of thegh model

parameter for client i. Then FL aims to learn the average X; = iN:1 pini

13 Some clients may not be able to run large models at all due to memory constraints.

14 While the sample mean is an unbiased estimator of the population mean, the variance
of the sample mean depends on the sample size (i.e., the number of clients).

15 1t each client's model weights follow a di erent distribution, one can use generaliza-
tions of CLT, such as the Lyapunov CLT and Lindeberg CLT [15].

Learning Fast and Slow: Towards Inclusive Federated Learning 9

across all clients, wherep; is the proportion of samples trained by clienti. CLT
posits that X; converges in distribution to the Normal distribution with mean

and nite variance 2=N. Thus, larger the variance, the more imprecise is our
estimate of X . To achieve better generalization, we randomly draw samples from
the learnt sample mean distribution and use them for the next round, where a
new set of random clients are selected for model training.

By drawing random samples from the sample mean distribution rather than
just using the sample mean in each round, we ensure that clients with large
values for the model parameters do not skew the learning process. To estimate
the distribution of the sample mean, we use parameters shared by clients in each
round independently As a result, there is no pooling of parameter values across
rounds due to dependencies introduced by SGD. In our evaluation, we show that
this strategy improves accuracy, robustness, and convergence speed compared to
just using the sample mean.

Algorithm 1: Hasaas

Input: Model Dropout Rate (k%), Pruning Round (r)
Server executes:

Initialize: Global model Wy, mask M 0;
for eachroundt=1,2,..., T do
if t> 1then

| Select sub-model wy from W; based on mask M
else

Wit Random selection k% ;

M Indexes of sub-model wy;
end
Ct (select n clients randomly) ; . n N
Send W; or wt to Ct based on their device characteristics
for each client c2 C; do

if cis slow then

Train sub-model Wi
activations f;wf,; = “(wt;C);
W, = Broadcast (wf,; ;M) ;

else
Train large model Wh:
activations §; W&, = “(Wt;c);

end
end
. . _ 1 . . c.
activgtions « = &+ ¢, ¢, activations ¢;
= Sc\wW.e . .
v ©2Ct sc Wi . St: Total samples
c 2
Sc(Wiig)
c2Cyt i
- Sy 1 !
= p—;

t
Wi+ = N(; 2) ;
if (t modr)==0 then

| Update M using activations of dense layer and “1-Norm of CNN lters
end

end

4.1 Algorithm

At the start of the FL process, the server initializes a global modelW, and a
maskM to keep track of the smaller model sent to the slow clients; see Algorithm

10 M. Munir et al.

1. The server randomly picks a smaller model, (which we call a sub-mode)
from the global model Wy. It does so randomly at the start as it does not have
any prior information to e ectively choose a sub-model. The server selectsn
clients randomly and sends the sub-modelvg or the large modelW, to selected
clients based on their device characteristics. LeC; denote the set of all clients
selected in roundt. Each client trains its model and sends the model updates
as well as activations of dense layers to the server. The server aggregates these
updates and activations. In weighted aggregations, and S; represent the number
of training samples of client ¢ and the number of training samples in roundt,
respectively. Based on average activations, and1l-norm of the CNN lters, the
server picks the optimal sub-model for slow clients after everyr rounds. The
only two parameters of Hasaasare k (MDR), representing the percentage of
neurons/ Iters to be dropped from the dense and convolution layers and the
Mask Update Round (MUR) r, at which M is updated.

Aggregation . Hasaasuses insights from CLT to aggregate clients' model
parameters. Server calculates the weighted mean (weighted by number of data
samples) and standard deviation of each parameter across clients. It then uses

and to randomly sample parameters from the Normal distribution to send
back to the clients. As training progresses and the model becomes stable, large
changes in model parameters can advebsely impact performance. As a result, we
continue decreasing proportional to 1=t (current round), which limits model
deviations from the stable parameters and helps with generalization.

5 Evaluation

We now present empirical results forHasaasusing large-scale simulations and
small-scale testbed experiments under federated settings. We demonstrate the
e ectiveness of Hasaadn the presence of both system and statistical heterogene-
ity and study its convergence, robustness, and fairness properties. All code and
scripts for generating the paper results are available here.

A. Experimental Details . We evaluate Hasaason multiple models, tasks, and
real-world federated datasets. We implementHasaasn LEAF [9] { a benchmark-
ing framework for FL to simulate our federated setup { and evaluate its perfor-
mance on CNN and LSTM models, and ve real-world datasets. Speci cally, we
use CIFAR-10, Federated extended MNIST (FEMNIST), FEMNIST (skewed),
Fashion-MNIST (FMNIST) for CNN and Sent140 for the LSTM model. We
compare Hasaagperformance with FedAvg [26], FedProx [33], and Single-Model
Adaptive Federated Dropout [6].

Real Data . The datasets we use are curated from prior work in FL [33,22,8]
and recent FL benchmarks in LEAF [9]. FMNIST, FEMNIST, and Sent140 are
non-l1D datasets. To study Hasaasunder an |ID dataset, we curated CIFAR-10
in an 11D fashion, where each example has the same probability to belong to any
device. We then study a more complex 62-class FEMNIST dataset [11,8]. Details
of datasets, models, and workloads are provided in Appendix A.2 on GitHub.

	Learning Fast and Slow: Towards Inclusive Federated Learning

